-
离子阱系统是实现量子计算和量子模拟的主要体系之一. 世界范围内的各个离子阱研究小组共同推动着离子阱结构的丰富化发展, 开发出一系列高性能的三维离子阱、二维离子芯片、以及具有集成器件的离子阱系统. 离子阱的结构逐渐向小型化、高通光性和集成化方向发展, 并表现出卓越的量子操控能力—对多离子的囚禁能力和精确控制能力越来越高. 本综述将总结过去的十几年里离子阱在结构上的演化历程, 以及离子阱在量子计算与量子模拟实验研究中的最新进展. 通过分析具有代表性的离子阱结构, 总结离子阱系统在加工工艺、鲁棒性和多功能性等方面取得的进步, 并对基于离子阱系统的可扩展量子计算与模拟作出展望.Ion trap system is one of the main quantum systems to realize quantum computation and simulation. Various ion trap research groups worldwide jointly drive the continuous enrichment of ion trap structures, and develop a series of high-performance three-dimensional ion trap, two-dimensional ion trap chip, and ion traps with integrated components. The structure of ion trap is gradually developing towards miniaturization, high-optical-access and integration, and is demonstrating its outstanding ability in quantum control. Ion traps are able to trap increasingly more ions and precisely manipulate the quantum state of the system. In this review, we will summarize the evolution history of the ion trap structures in the past few decades, as well as the latest advances of trapped-ion-based quantum computation and simulation. Here we present a selection of representative examples of trap structures. We will summarize the progresses in the processing technology, robustness and versatility of ion traps, and make prospects for the realization of scalable quantum computation and simulation based on ion trap system.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] -
参考文献 课题组 腔长/μm 凹面半径/μm 模式波长 /nm 束腰/μm 精细度 [153] Walther 6000 10000 Ca-397 24 3000 [149] Blatt 21000 25000 Ca-729 54 35000 [146,147] Walther 8000 10000 Ca-866 37 49000 [16,154] Blatt 19980 10000 Ca-866 13 70000 [148] Chuang 50000 50000 Sr-422 57.9 25600 [145] Vuletic 22000 25000 Yb-369 38 12500 [155] Monroe 2126 25000 Yb-369 25 3790$\rightarrow $1490 [93] Blatt 19900 9980 Ca-866 12.3 54000 [156] Kurtsiefer 11000 5500 Rb-780 2.4 603 [157] Köhl 230 390 Yb-935 7 1000 [158] Köhl 150 300 Yb-935 6.1 20000 [159] Köhl 150 200 Yb-935 3.1 1140$\rightarrow $207 [143] Keller 367 560 Ca-866 8.5 48000 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184]
计量
- 文章访问数:10082
- PDF下载量:661
- 被引次数:0