-
传统谐振式传感器的谐振敏感元件大多采用金属、石英晶体、硅等材料制成, 但随着谐振式传感器朝着小型化、微型化、实用化的趋势发展, 不但要求新型谐振子材料可进行微纳加工, 还对其灵敏度和精度提出了更高的要求. 石墨烯这种新型二维纳米材料, 因具有出色的力学、电学、光学、热学特性, 在谐振传感领域有着巨大的应用潜力和研究价值, 因此基于石墨烯材料的力学量传感器有望在小型化、高性能和环境适应性等多方面超越硅基力学量传感器. 本文针对石墨烯谐振式力学量传感器, 介绍了石墨烯材料的基本性质、制备与转移方法, 阐述了谐振式传感器的工作原理与应用特点, 进而分析了关于石墨烯谐振特性优化与谐振器制备的理论与实验研究; 在此基础上, 重点总结了石墨烯谐振器在压力、加速度、质量等传感器领域的研究进展, 梳理了石墨烯谐振式力学量传感器在薄膜转移、结构制备与激振/拾振等方面的技术问题, 同时也明确了石墨烯在谐振传感领域的研究价值和发展潜力.The resonant sensor is a kind of high-sensitivity and high-stability sensor that directly outputs digital signals. The resonance sensitive elements of traditional resonant sensors are mostly made of metal, quartz crystal, silicon and other materials. However, with the development of resonant sensor toward the miniaturization and intellectualization, the sensitive materials of new resonator are micro-nano machined and highly sensitive. As a new type of two-dimensional nanomaterial, graphene has the great potentials in the field of resonance sensing because of its excellent mechanical, electrical, optical and thermal properties. Therefore, the mechanical quantity sensor based on graphene material is expected to surpass the silicon material mechanical quantity sensor in many aspects such as micro-nano size, high performance, and environmental adaptability. This review focuses on the graphene resonant mechanical quantity sensor. In the first part, we summarize the basic properties, preparation methods, and transfer methods of graphene materials. The preparation and transmission methods of graphene are key to high-performance graphene resonator, but there are still different problems in the preparation and transfer of graphene, which also greatly restricts the development of graphene resonator. In the second part, the basic theory of resonant sensors is given, and the common methods of transferring graphene films are introduced in detail. Then the theoretical and experimental studies of graphene resonator are discussed. For example, the theoretical studies of graphene resonator are investigated by using the classical elastic theory, non-local elastic theory, molecular structure mechanics and molecular dynamics. Then the effects of graphene preparation method, graphene layer number and shape, excitation and detection methods on the resonance performance are estimated in the resonant experiments of graphene resonators. After that, the research progress of graphene resonator is summarized in the fields of pressure, acceleration and mass sensors. Compared with traditional silicon resonators, graphene resonators have a small dimension and demonstrate preferable resonant performance under low-temperature and low-pressure conditions. In this case, the technical issues of graphene resonant sensor are introduced to emphasize the importance of suspended graphene film transfer, structure fabrication of harmonic oscillator and vibration excitation/detection of resonators, which contributes to the potential applications in the fields of aerospace, intelligent detection and biomedical sensing for graphene resonant sensors.
-
Keywords:
- graphene/
- resonator/
- mechanical quantity sensor/
- performance analysis
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] -
制备方法 层数 固支方式 谐振频率f/MHz 品质因数Q 激励
方式检测
方式实验环境
(温度, 压强P/Pa)文献 机械剥离法 1—224 双端固支 1—170 20—850 电学/
空间光空间光 室温,P< 1.3×10–4 [53] 1 双端固支 30—120
30—120125
14000电学 电学 室温,P< 1.3×10–3;
5 K,P< 1.3×10–3[57] <5 双端固支 108—122 — 电学 电学 室温,P< 6.7 [59] ~31 圆形固支 1—30 2400±300 空间光 空间光 室温,P< 0.79 [60] 2—5 双端固支 8—23 7000 热噪声 电学 室温,P< 10–3 [61] 1 圆形固支 15.7 120 空间光 空间光 室温,P= 1.013×105 [64] 1 周边固支 30—90 25 空间光 空间光 室温,P= 27—3×104 [65] ~30 圆形固支 12—16 1—100 空间光 空间光 室温,P= 8×102—105 [67] CVD法 1 双端固支 5—75 25
9000电学/
空间光电学/
空间光室温,P< 6.7×10–3;
10 K,P< 6.7×10–3[58] 30—60 双端固支 0.060—0.204 81—103 光纤光 光纤光 室温,P= 10–2—105 [66] ~13 圆形固支 0.509—0.542 13.3—16.6 光纤光 光纤光 室温,P= 105—2.99×105 [69] 层数/层 形状 长度或
直径/μm激励
方式检测
方式测压范围/Pa 谐振频率f 品质因数Q
(室温)压力灵敏度
(kHz·kPa–1)文献 1—75 正方形 4.75 空间光 空间光 10–4—105 30—
90 MHz~25 — [65] 多层 圆形 125 光纤光 光纤光 10–2—105 60—204 kHz 81—103 / [66] 少层 圆形 5 空间光 空间光 8×102—105 12—
16 MHz1—100 10—90 [67] 多层 正方形 4 空间光 空间光 102—105 15.5—
25.5 MHz50—80 1.65—3.10 [68] 13 圆形 125 光纤光 光纤光 (1—2.99)×105 509—
542 kHz13.3—16.6 0.135 [69] 10 圆形 125 光纤光 光纤光 0—6.895×104 1.43—
1.64 MHz10.2—13.9 2.93 [70] 10 圆形 125 光纤光 光纤光 2—105 481—
760 kHz110—1034 1—110.4 [71] 实验/仿真 分析方法 薄膜形状 检测目标 谐振频率f 可检测到的最小
质量/(10–21g)品质
因数Q文献 仿真 分子结构力学仿真 长方形 质点/原子尘埃 0—104 GHz 1 — [77] 分子动力学仿真 正方形 惰性气体原子 — 1 — [81] 有限元模拟 圆形 质点 ~0—200 GHz 1 — [86] 连续弹性介质模型和
瑞利能量法圆形 质点 0—105 GHz 10–3 — [82] 分子动力学仿真 长方形 纳米粒子 0—230 GHz 10–3 — [83] 连续弹性介质模型 正方形 纳米粒子 0—105 GHz 10 — [85] 薄膜理论和有限元模拟 长方形 烟草花叶病毒 ~200—1500 MHz — — [87] 实验 — 长方形 氩氢混合气 95.5 MHz 886 45 [88] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88]
计量
- 文章访问数:6120
- PDF下载量:194
- 被引次数:0