\begin{document}$ {\xi }_{400} $\end{document}. 分析了影响测量不确定度的因素, 并运用一阶偏导的方法讨论了各个因素对测量不确定度的影响系数, 依据GB/T 27418-2017《测量不确定度评定与表示》对实验估计值进行了不确定度评定. 结论如下: 被测Si晶体局部厚度的实验估计值为239 nm, 其合成标准不确定度为5 nm, 相对标准不确定度为2.2%; 包含概率为0.95时, 包含因子为2.07, 扩展不确定度为11 nm; 加速电压为200 kV时, Si晶体(400)晶面的消光距离\begin{document}$ {\xi }_{400} $\end{document}的实验估计值为194 nm, 合成标准不确定度为20 nm; 包含概率为0.85时, 包含因子为1.49, 扩展不确定度为30 nm. 影响试样厚度\begin{document}$ {t}_{0} $\end{document}合成标准不确定度的主要因素是相机常数、加速电压和试样厚度; 影响消光距离\begin{document}$ \mathrm{\xi } $\end{document}合成标准不确定度的主要因素是相机常数、加速电压和消光距离. 双束K-M花样测量数据的测量不确定度\begin{document}$ u\left({\Delta }{\theta }_{i}\right) $\end{document}对消光距离不确定度的影响约是对试样厚度不确定度影响的\begin{document}${n}_{i}{\left( {\xi }/{t}\right)}^{3}$\end{document}(\begin{document}$ {n}_{i} $\end{document}为正整数, \begin{document}$ {n}_{i} $\end{document}≥1)倍, 对拟合直线斜率的不确定度的影响是对截距不确定度影响的\begin{document}$ {n}_{i} $\end{document}倍. 如果试样有一定厚度, 即\begin{document}$ {n}_{i} $\end{document}>1, 则用TEM双束会聚束衍射K-M花样分析薄晶体厚度的不确定度较小, 而用此方法分析消光距离的不确定度较大."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    娄艳芝, 李玉武

    Evaluation of uncertainty in measuring thin crystal thickness and extinction distance by Kossel-Möllenstedt pattern analysis

    Lou Yan-Zhi, Li Yu-Wu
    PDF
    HTML
    导出引用
    • 本文通过分析200 kV加速电压条件下, 单晶Si薄膜样品的透射电子显微镜(TEM)双束会聚束衍射(CBED) Kossel-Möllenstedt (K-M)花样, 测定了单晶Si薄膜样品的局部厚度和Si晶体(400)晶面的消光距离 $ {\xi }_{400} $ . 分析了影响测量不确定度的因素, 并运用一阶偏导的方法讨论了各个因素对测量不确定度的影响系数, 依据GB/T 27418-2017《测量不确定度评定与表示》对实验估计值进行了不确定度评定. 结论如下: 被测Si晶体局部厚度的实验估计值为239 nm, 其合成标准不确定度为5 nm, 相对标准不确定度为2.2%; 包含概率为0.95时, 包含因子为2.07, 扩展不确定度为11 nm; 加速电压为200 kV时, Si晶体(400)晶面的消光距离 $ {\xi }_{400} $ 的实验估计值为194 nm, 合成标准不确定度为20 nm; 包含概率为0.85时, 包含因子为1.49, 扩展不确定度为30 nm. 影响试样厚度 $ {t}_{0} $ 合成标准不确定度的主要因素是相机常数、加速电压和试样厚度; 影响消光距离 $ \mathrm{\xi } $ 合成标准不确定度的主要因素是相机常数、加速电压和消光距离. 双束K-M花样测量数据的测量不确定度 $ u\left({\Delta }{\theta }_{i}\right) $ 对消光距离不确定度的影响约是对试样厚度不确定度影响的 ${n}_{i}{\left( {\xi }/{t}\right)}^{3}$ ( $ {n}_{i} $ 为正整数, $ {n}_{i} $ ≥1)倍, 对拟合直线斜率的不确定度的影响是对截距不确定度影响的 $ {n}_{i} $ 倍. 如果试样有一定厚度, 即 $ {n}_{i} $ >1, 则用TEM双束会聚束衍射K-M花样分析薄晶体厚度的不确定度较小, 而用此方法分析消光距离的不确定度较大.
      In this paper, the local thickness of single crystal Si film sample and the extinction distance $ {\xi }_{400} $ of the (400) plane of Si crystal are obtained by analyzing the double-beam converging beam diffraction (CBED) pattern of single crystal Si film sample under the 200 kV of accelerated voltage. The factors affecting the measurement uncertainty are analyzed, and the influence coefficients of each factor on the measurement uncertainty are discussed by using the concept of first-order partial derivative. The measurement uncertainty of thin crystal thickness and extinction distance are evaluated and expressed according to national standards GB/T 27418-2017. The conclusions are as follows. The local thickness of the measured Si crystal is estimated at 239 nm, the combined standard uncertainty is 5 nm, and the relative standard uncertainty is 2.2%. With the inclusion probability being 0.95, the coverage factor is 2.07 and the expanded uncertainty is 11 nm. With the accelerated voltage being 200 kV, the extinction distance of Si crystal (400) plane is estimated at 194 nm, the combined standard uncertainty of the extinction distance is 20 nm, and the relative standard uncertainty of the extinction distance is 10%. With the inclusion probability being 0.85, the coverage factor is 1.49 and the expanded uncertainty is 30 nm. The main factors that can affect the combined standard uncertainty of sample thickness t 0are camera constant, accelerating voltage and sample thickness, while the factors that influence the combined standard uncertainty of extinction distance are camera constant, accelerating voltage and extinction distance. The influence of the uncertainties of the measurement data of the Kossel-Möllenstedt pattern on the uncertainty of the extinction distance is ${n}_{i}{\left( {\xi }/{t}\right)}^{3}$ times that on the sample thickness, and their influence on the slope of the fitting line is about $ {n}_{i} $ times that on the intercept of the line, where $ {n}_{i} $ is a positive integer and greater than or equal to 1. If the sample is not too thin, that is, $ {n}_{i} $ is greater than 1, then the uncertainty of crystal thickness will be smaller than the uncertainty of extinction distance.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

      • $ Z $ Data 1
        /nm–1
        Data 2
        /nm–1
        Data 3
        /nm–1
        Ave.
        /nm–1
        $ u\left(Z\right) $/nm–1
        R 7.336 7.336 7.318 7.330 0.006
        Δθ1 0.361 0.342 0.343 0.349 0.006
        Δθ2 0.631 0.613 0.595 0.613 0.010
        Δθ3 0.829 0.831 0.847 0.836 0.006
        Δθ4 1.101 1.082 1.045 1.076 0.016
        Δθ5 1.299 1.334 1.298 1.310 0.012
        Δθ6 1.516 1.532 1.569 1.539 0.016
        Δθ7 1.750 1.766 1.785 1.767 0.010
        Δθ8 2.001 2.019 1.949 1.990 0.021
        下载: 导出CSV

        i $ {n}_{i} $ $ {n}_{i}^{-2} $ 数据1 数据2 数据3 平均值
        $ {\mathit{s}}_{i} $
        /nm–1
        $ {\left({\mathit{s}}_{i}/{n}_{i}\right)}^{2} $
        /(10–5nm–2)
        $ {\mathit{s}}_{i} $
        /nm–1
        $ {\left({\mathit{s}}_{i}/{n}_{i}\right)}^{2} $
        /(10–5nm–2)
        $ {\mathit{s}}_{i} $
        /nm–1
        $ {\left({\mathit{s}}_{i}/{n}_{i}\right)}^{2} $
        /(10–5nm–2)
        $\bar{s}_i$
        /nm–1
        $(\bar{s}_i/n_i)^2$
        /(10–5nm–2)
        1 2 0.2500 0.0067 1.1239 0.0064 1.0087 0.0064 1.0146 0.0065 1.0484
        2 3 0.1111 0.0117 1.5262 0.0114 1.4403 0.0111 1.3570 0.0114 1.4403
        3 4 0.0625 0.0154 1.4817 0.0154 1.4889 0.0157 1.5468 0.0155 1.5057
        4 5 0.040 0.0204 1.6727 0.0201 1.6155 0.0194 1.5069 0.0200 1.5976
        5 6 0.0278 0.0241 1.6170 0.0248 1.7053 0.0241 1.6145 0.0243 1.6453
        6 7 0.0204 0.0282 1.6180 0.0285 1.6524 0.0291 1.7331 0.0286 1.6675
        7 8 0.0156 0.0325 1.6507 0.0328 1.6811 0.0332 1.7174 0.0328 1.6830
        8 9 0.0123 0.0372 1.7053 0.0375 1.7361 0.0362 1.6178 0.0370 1.6860
        下载: 导出CSV

        $ k $
        /(10–7nm–2)
        $ u\left(k\right) $
        /(10–7nm–2)
        $ {\xi }_{400} $
        /nm
        $ u\left({\xi }_{400}\right) $
        /nm
        b
        /(10–7nm–2)
        $ u\left(b\right) $
        /(10–7nm–2)
        t
        /nm
        $ u\left(t\right) $
        /nm
        $ {t}_{0} $
        /nm
        $ u\left({t}_{0}\right) $
        /nm
        –266.105 9.703 194 3.534 171.376 0.982 242 0.692 239 0.685
        下载: 导出CSV

        i $ {n}_{i} $ $ {\Delta }{\theta }_{i} $ $ \dfrac{\partial {t}_{0}}{\partial \xi } $ $ {\left[\dfrac{\partial {t}_{0}}{\partial \xi }\right]}^{2}{u}^{2}\left(\xi \right) $
        /nm2
        $ \dfrac{\partial {t}_{0}}{\partial k} $
        /(105nm3)
        $ {\left[\dfrac{\partial {t}_{0}}{\partial k}\right]}^{2}{u}^{2}\left(k\right) $
        /nm2
        $ \dfrac{\partial {t}_{0}}{\partial {\Delta }{\theta }_{i}} $
        /(102nm2)
        $ {\left[\dfrac{\partial {t}_{0}}{\partial {\Delta }{\theta }_{i}}\right]}^{2}{u}^{2}\left({\Delta }{\theta }_{i}\right) $
        /nm2
        $ \dfrac{\partial {t}_{0}}{\partial {R}_{hkl}} $
        /nm2
        $ {\left[\dfrac{\partial {t}_{0}}{\partial {R}_{hkl}}\right]}^{2}{u}^{2}\left({R}_{hkl}\right) $
        /nm2
        1 2 0.349 0.4789 2.865 17.445 2.865 –8.383 26.848 39.92 0.057
        2 3 0.613 0.2129 0.566 7.753 0.566 –9.838 104.519 82.27 0.244
        3 4 0.836 0.1197 0.179 4.361 0.179 –10.058 32.823 114.67 0.473
        4 5 1.076 0.0766 0.073 2.791 0.073 –10.361 290.186 152.09 0.833
        5 6 1.310 0.0532 0.035 1.938 0.035 –10.514 154.891 187.96 1.272
        6 7 1.539 0.0391 0.019 1.424 0.019 –10.585 275.992 222.24 1.778
        7 8 1.767 0.0299 0.011 1.090 0.011 –10.634 115.718 256.35 2.366
        8 9 1.990 0.0237 0.007 0.861 0.007 –10.644 498.953 288.91 3.005
        下载: 导出CSV

        i $ {n}_{i} $ $ {\Delta }{\theta }_{i} $ $ \dfrac{\partial \xi }{\partial t} $ $ {\left[\dfrac{\partial \xi }{\partial t}\right]}^{2}{u}^{2}\left(t\right) $
        /nm2
        $ \dfrac{\partial \xi }{\partial b} $
        /(107nm3)
        $ {\left[\dfrac{\partial \xi }{\partial b}\right]}^{2}{u}^{2}\left(b\right) $
        /nm2
        $ \dfrac{\partial \xi }{\partial {\Delta }{\theta }_{i}} $
        /(102nm2)
        ${\left[\dfrac{\partial \xi }{\partial {\Delta }{\theta }_{i} }\right]}^{2}{u}^{2} ({ {\Delta }{\bar\theta }_{i} } )$
        /(102nm2)
        $ \dfrac{\partial \xi }{\partial {R}_{hkl}} $
        /(102nm2)
        ${\left[\dfrac{\partial \xi }{\partial {R}_{hkl} }\right]}^{2}{u}^{2}\left({\bar {R}_{hkl} }\right)$
        /nm2
        1 2 0.349 2.067 2.047 –1.457 2.047 –8.762 0.293 –0.417 0.063
        2 3 0.613 4.651 10.363 –3.278 10.363 –15.405 2.563 –1.289 0.598
        3 4 0.836 8.269 32.752 –5.828 32.752 –21.001 1.431 –2.394 2.064
        4 5 1.076 12.921 79.962 –9.106 79.962 –27.041 19.767 –3.969 5.672
        5 6 1.310 18.606 165.809 –13.113 165.809 –32.929 15.193 –5.887 12.475
        6 7 1.539 25.325 307.182 –17.848 307.182 –38.676 36.847 –8.120 23.738
        7 8 1.767 33.077 524.039 –23.312 524.039 –44.406 20.179 –10.705 41.252
        8 9 1.990 41.863 839.410 –29.504 839.410 –50.001 110.117 –13.573 66.316
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

      • [1] 李丽娟, 明飞, 宋学科, 叶柳, 王栋.熵不确定度关系综述. 必威体育下载 , 2022, 71(7): 070302.doi:10.7498/aps.71.20212197
        [2] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏.可搬运锶光晶格钟系统不确定度的评估. 必威体育下载 , 2021, 70(3): 030601.doi:10.7498/aps.70.20201204
        [3] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清.双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 必威体育下载 , 2018, 67(21): 217201.doi:10.7498/aps.67.20181509
        [4] 王倩, 魏荣, 王育竹.原子喷泉频标:原理与发展. 必威体育下载 , 2018, 67(16): 163202.doi:10.7498/aps.67.20180540
        [5] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹.66116618 cm-1之间氨气光谱线强的测量. 必威体育下载 , 2017, 66(5): 054207.doi:10.7498/aps.66.054207
        [6] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强.机载多脉冲激光测距特性及其不确定度研究. 必威体育下载 , 2015, 64(12): 120601.doi:10.7498/aps.64.120601
        [7] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏.透射光栅谱仪测谱不确定度分析. 必威体育下载 , 2013, 62(17): 170602.doi:10.7498/aps.62.170602
        [8] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华.宇宙核时钟不确定度的研究. 必威体育下载 , 2012, 61(11): 112601.doi:10.7498/aps.61.112601
        [9] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜.大幅提高视觉密度国家基准测量水平的方法研究. 必威体育下载 , 2012, 61(23): 230601.doi:10.7498/aps.61.230601
        [10] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏.同步辐射标定平面镜反射率不确定度分析方法研究. 必威体育下载 , 2010, 59(10): 7078-7085.doi:10.7498/aps.59.7078
        [11] 罗志勇, 杨丽峰, 陈允昌.基于多光束干涉原理的相移算法研究. 必威体育下载 , 2005, 54(7): 3051-3057.doi:10.7498/aps.54.3051
        [12] 李树有, 都志辉, 吴梦月, 朱静, 李三立.模拟退火算法的并行实现及其应用. 必威体育下载 , 2001, 50(7): 1260-1263.doi:10.7498/aps.50.1260
        [13] 冯国光.位错的会聚束电子衍射研究. 必威体育下载 , 1986, 35(2): 279-282.doi:10.7498/aps.35.279
        [14] 冯国光.层状晶体层错的会聚束电子衍射研究. 必威体育下载 , 1986, 35(2): 274-278.doi:10.7498/aps.35.274
        [15] .GH302合金中C14型Laves相的会聚束电子衍射研究. 必威体育下载 , 1985, 34(5): 681-684.doi:10.7498/aps.34.681
        [16] 冯国光.大角度会聚束电子衍射的新方法. 必威体育下载 , 1984, 33(9): 1287-1290.doi:10.7498/aps.33.1287
        [17] 冯国光, 杨翠英, 周玉清, 唐棣生.结合会聚束电子衍射和高分辨电子显微术来测定十四铌酸锂的结构. 必威体育下载 , 1984, 33(11): 1581-1585.doi:10.7498/aps.33.1581
        [18] 杨翠英, 周玉清, 舒启茂, 夏鸿昶, 陈应平, 冯国光.用会聚束电子衍射测定LiZnTa3O9,LiCaTa3O9的对称性. 必威体育下载 , 1984, 33(12): 1687-1692.doi:10.7498/aps.33.1687
        [19] 杨翠英, 冯国光, 周玉清, 唐棣生.三铌酸锂空间群的会聚束电子衍射测定. 必威体育下载 , 1984, 33(11): 1586-1588.doi:10.7498/aps.33.1586
        [20] 郭可信.电子衍射谱自动标定中的消光处理. 必威体育下载 , 1978, 27(4): 473-475.doi:10.7498/aps.27.473
      计量
      • 文章访问数:3191
      • PDF下载量:64
      • 被引次数:0
      出版历程
      • 收稿日期:2021-12-08
      • 修回日期:2022-03-13
      • 上网日期:2022-07-03
      • 刊出日期:2022-07-20

        返回文章
        返回
          Baidu
          map