搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    杨光, 刘琦, 聂敏, 刘原华, 张美玲

    Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement

    Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling
    PDF
    HTML
    导出引用
    • 基于纠缠交换方法进行多跳量子信息传输,是实现远距离量子网络通信的基本方式之一. 传统的多跳量子网络通常使用单自由度极化光子纠缠态作为量子信道, 信息传输容量较低且容易受到噪声的干扰. 本文提出一种基于超纠缠的高效量子网络多跳纠缠交换方法,利用极化-空间模式两自由度的纠缠光子, 建立超纠缠量子多跳信息传输通道. 以远程超纠缠隐形传态的信道建立需求为例, 首先给出了基础的逐跳超纠缠交换方案, 为降低该方案的端到端超纠缠建立时延, 提出在中间量子节点进行同时测量的并行超纠缠交换方案. 在此基础上, 为降低并行超纠缠交换的经典信息开销, 进一步提出一种分级并行超纠缠交换方案. 理论分析及仿真结果表明该方案的纠缠建立时延接近于并行超纠缠交换方案, 但可以减少经典信息传输量, 在一定程度上实现两者的平衡. 相比传统的纠缠交换方法, 本文方案有利于解决远程超纠缠通信的需求,对未来构建更高效率的量子网络有积极意义.
      Entanglement swapping (ES) based multi-hop quantum information transmission is a fundamental way to realize long-distance quantum communication. However, in the conventional quantum networks, the entanglement in one degree of freedom (DOF) of photon system is usually used as a quantum channel, showing disadvantages of low capacity and susceptibility to noise. In this paper, we present an efficient multi-hop quantum hyperentanglement swapping (HES) method based on hyperentanglement, which utilizes the entangled photos in polarization and spatial-mode DOFs to establish the hyperentangled multi-hop quantum channel. Taking long-distance hyperentanglement based quantum teleportation for example, we first describe a basic hop by hop HES scheme. Then, in order to reduce the end-to-end delay of this scheme, we propose a simultaneous HES (SHES) scheme, in which the intermediate quantum nodes perform hyperentangled Bell state measurements concurrently. On the basis of this scheme, we further put forward a hierarchical SHES (HSHES) scheme that can reduce the classical information cost. Theoretical analysis and simulation results show that the end-to-end delay of HSHES is similar to that of SHES, meanwhile, the classical information cost of HSHES is much lower than that of SHES, showing a better tradeoff between the two performance metrics. Compared with the traditional ES methods, the scheme proposed in this paper is conductive to meeting the requirements for long-distance hyperentanglement based quantum communication, which has positive significance for building more efficient quantum networks in the future.
          通信作者:刘琦,valenti_67@foxmail.com
        • 基金项目:国家自然科学基金(批准号: 61971348, 61201194)和陕西省自然科学基础研究计划(批准号: 2021JM-464 ) 资助的课题.
          Corresponding author:Liu Qi,valenti_67@foxmail.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194) and the Natural Science Basic Research Program of Shaanxi Provence, China (Grant No. 2021JM-464).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

      • B和C的量子态 编码结果 AD的量子态 Bob的幺正变换
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ 0000 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ $ {U_1} = \sigma _I^P \otimes \sigma _I^S $
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0001 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ $ {U_2} = \sigma _I^P \otimes \sigma _Z^S $
        $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ 0010 $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ $ {U_3} = \sigma _Z^P \otimes \sigma _I^S $
        $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0011 $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ $ {U_4} = \sigma _Z^P \otimes \sigma _Z^S $
        $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ 0100 $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ $ {U_5} = \sigma _X^P \otimes \sigma _I^S $
        $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0101 $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ $ {U_6} = \sigma _X^P \otimes \sigma _Z^S $
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ 0110 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ ${U_7} = - {{i}}\sigma _Y^P \otimes \sigma _I^S$
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0111 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ ${U_8} = - {{i}}\sigma _Y^P \otimes \sigma _Z^S$
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^{\text{ + }}}} \right\rangle _{S} $ 1000 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^{\text{ + }}}} \right\rangle _{S} $ $ {U_9} = \sigma _I^P \otimes \sigma _X^S $
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ 1001 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{10} } = \sigma _I^P \otimes - {{i}}\sigma _Y^S$
        $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ + }} \right\rangle _{S} $ 1010 $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ + }} \right\rangle _{S} $ $ {U_{11}} = \sigma _Z^P \otimes \sigma _X^S $
        $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ 1011 $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{12} } = \sigma _Z^P \otimes - {{i}}\sigma _Y^S$
        $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ 1100 $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ $ {U_{13}} = \sigma _X^P \otimes \sigma _X^S $
        $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ 1101 $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{14} } = \sigma _X^P \otimes - {{i}}\sigma _Y^S$
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ 1110 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ ${U_{15} } = - {{i}}\sigma _Y^P \otimes \sigma _X^S$
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ 1111 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{16} } = - {{i}}\sigma _Y^P \otimes - {\rm{i} }\sigma _Y^S$
        下载: 导出CSV

        N1,N2, ···NN– 1测量结果 Alice的幺正变换
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_1} = \sigma _I^P \otimes \sigma _I^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_2} = \sigma _I^P \otimes \sigma _Z^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_3} = \sigma _I^P \otimes \sigma _X^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_4} = \sigma _I^P \otimes - i\sigma _Y^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_5} = \sigma _I^P \otimes \sigma _I^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_6} = \sigma _Z^P \otimes \sigma _Z^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_7} = \sigma _Z^P \otimes \sigma _X^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_8} = \sigma _Z^P \otimes - i\sigma _Y^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_9} = \sigma _X^P \otimes \sigma _I^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{10}} = \sigma _X^P \otimes \sigma _Z^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_{11}} = \sigma _X^P \otimes \sigma _X^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{12}} = \sigma _X^P \otimes - i\sigma _Y^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_{13}} = - i\sigma _Y^P \otimes \sigma _I^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{14}} = - i\sigma _Y^P \otimes \sigma _Z^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_{15}} = - i\sigma _Y^P \otimes \sigma _X^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{1{\text{6}}}} = - i\sigma _Y^P \otimes - i\sigma _Y^S $
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

      • [1] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华.基于量子Fisher信息测量的实验多体纠缠刻画. 必威体育下载 , 2023, 72(11): 110305.doi:10.7498/aps.72.20230356
        [2] 卫容宇, 李军, 张大命, 王炜皓.纠缠态量子探测系统的恒虚警检测方法研究. 必威体育下载 , 2022, 71(1): 010303.doi:10.7498/aps.71.20211121
        [3] 卫容宇, 李军, 张大命, 王炜皓.纠缠态量子探测系统的恒虚警检测方法研究. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211121
        [4] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞.优化抽运空间分布实现连续变量超纠缠的纠缠增强. 必威体育下载 , 2019, 68(3): 034204.doi:10.7498/aps.68.20181625
        [5] 聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸.基于袋鼠纠缠跳跃模型的量子状态自适应跳变通信策略. 必威体育下载 , 2019, 68(11): 110301.doi:10.7498/aps.68.20190163
        [6] 朱浩男, 吴德伟, 李响, 王湘林, 苗强, 方冠.基于纠缠见证的路径纠缠微波检测方法. 必威体育下载 , 2018, 67(4): 040301.doi:10.7498/aps.67.20172164
        [7] 宗晓岚, 杨名.多粒子纠缠的保护方案. 必威体育下载 , 2016, 65(8): 080303.doi:10.7498/aps.65.080303
        [8] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛.基于纠缠态的量子通信网络的量子信道建立速率模型. 必威体育下载 , 2015, 64(4): 040301.doi:10.7498/aps.64.040301
        [9] 丁东, 何英秋, 闫凤利, 高亭.六光子超纠缠态制备方案. 必威体育下载 , 2015, 64(16): 160301.doi:10.7498/aps.64.160301
        [10] 任宝藏, 邓富国.光子两自由度超并行量子计算与超纠缠态操控. 必威体育下载 , 2015, 64(16): 160303.doi:10.7498/aps.64.160303
        [11] 杨光, 廉保旺, 聂敏.多跳噪声量子纠缠信道特性及最佳中继协议. 必威体育下载 , 2015, 64(24): 240304.doi:10.7498/aps.64.240304
        [12] 赵建辉, 王海涛.应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 必威体育下载 , 2012, 61(21): 210502.doi:10.7498/aps.61.210502
        [13] 胡要花.运动原子多光子J-C模型中的熵交换与纠缠. 必威体育下载 , 2012, 61(12): 120302.doi:10.7498/aps.61.120302
        [14] 李伟, 范明钰, 王光卫.基于纠缠交换的仲裁量子签名方案. 必威体育下载 , 2011, 60(8): 080302.doi:10.7498/aps.60.080302
        [15] 王海霞, 殷雯, 王芳卫.耦合量子点中的纠缠测量. 必威体育下载 , 2010, 59(8): 5241-5245.doi:10.7498/aps.59.5241
        [16] 唐有良, 刘 翔, 张小伟, 唐筱芳.用一个纠缠态实现多粒子纠缠态的量子隐形传送. 必威体育下载 , 2008, 57(12): 7447-7451.doi:10.7498/aps.57.7447
        [17] 王菊霞, 杨志勇, 安毓英.多模光场与二能级原子相互作用的纠缠交换与保持. 必威体育下载 , 2007, 56(11): 6420-6426.doi:10.7498/aps.56.6420
        [18] 冯发勇, 张 强.基于超纠缠交换的量子密钥分发. 必威体育下载 , 2007, 56(4): 1924-1927.doi:10.7498/aps.56.1924
        [19] 杨宇光, 温巧燕, 朱甫臣.基于纠缠交换的多方多级量子密钥分配协议. 必威体育下载 , 2005, 54(12): 5544-5548.doi:10.7498/aps.54.5544
        [20] 石名俊, 杜江峰, 朱栋培.量子纯态的纠缠度. 必威体育下载 , 2000, 49(5): 825-829.doi:10.7498/aps.49.825
      计量
      • 文章访问数:3871
      • PDF下载量:64
      • 被引次数:0
      出版历程
      • 收稿日期:2021-11-25
      • 修回日期:2022-01-11
      • 上网日期:2022-02-21
      • 刊出日期:2022-05-20

        返回文章
        返回
          Baidu
          map