搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

徐又捷, 郭迎春, 王兵兵

Quantum chemical calculation of normal vibration frequencies of polyatomic molecules

Xu You-Jie, Guo Ying-Chun, Wang Bing-Bing
PDF
HTML
导出引用
  • 针对较大分子振动频率的量化计算, 提出了一个节省计算成本的方法. 含 N个原子的分子的振动频率的计算通常需要计算3 N维势能超曲面及其二阶导数构成的Hessian矩阵, 然后解其特征方程得到全部简正振动模式的振动频率. N越大, 计算成本越大. 本文提出, 针对那些由平衡结构和对称性就能完全确定的振动模式, 可以逐个计算其振动频率. 当仅考虑一个振动模式时, 3 N维的Hessian矩阵的计算转化为一维的势能曲线的计算. 基于简谐振子近似推导单一振动模式下分子势能曲线的表达式, 接着量化计算势能曲线, 将势能曲线拟合到表达式中以获得振动频率. 相比计算3 N维势能超曲面及其二阶导数的Hessian矩阵, 仅计算一维势能曲线而节省下来的计算资源可以允许选择更高级别的计算方法和采用更为完备的基组, 提高计算的精度. 本文首先以计算水分子的 B 2振动模式的振动频率为例, 说明了这种方法的可行性. 接着将这种方法应用到SF 6分子中. 多参考组态相互作用(MRCI)方法是计算电子相关能的有效方法, 本文采用MRCI/6-311G*基组分别计算了SF 6的A 1g, E g, T 2g和T 2u四个振动模式的振动频率, 通过与其他方法的结果以及实验结果相比较, 本文计算的四个频率的相对误差最小.
    Quantum calculation of molecular vibrational frequency is important in investigating infrared spectrum and Raman spectrum. In this work, a low computational cost method of calculating the quantum chemistry of vibrational frequencies for large molecules is proposed. Usually, the calculation of vibrational frequency of a molecule containing Natoms needs to deal with the Hessian matrix, which consists of second derivatives of the 3 N-dimensional potential hypersurface, and then solve secular equations of the matrix to obtain normal vibration modes and the corresponding frequencies. Larger Nimplies higher computational cost. Therefore, for a limited computational hardware condition, higher-level computations for large Natomic molecule’s vibrational frequencies cannot be implemented in practice. Here we solve this problem by calculating the vibrational frequency for only one vibrational mode each time instead of calculating the Hessian matrix to obtain all vibrational frequencies. When only one vibrational mode is taken into consideration, the molecular potential hypersurface can be transformed into one-dimensional curve. Hence, we can calculate the curve with high-level computational method, then deduce the expression of one-dimensional curve by using harmonic oscillating approximation and obtain the vibrational frequency by using the expression to fit the curve. It should be noted that this method is applied to vibrational modes whose vibrational coordinates can be completely determined by equilibrium geometry and the molecular symmetry and be independent of the molecular force constants. It requires that there exists no other vibrational mode with the same symmetry but with different frequencies. The lower computational cost for a one-dimensional potential curve than that for 3 N-dimensional potential hypersurface’s second derivatives permits us to use higher-level method and larger basis set for a given computational hardware condition to achieve more accurate results. In this paper we take the calculation of B 2vibrational frequency of water molecule for example to illustrate the feasibility of this method. Furthermore, we use this method to deal with the SF 6molecule. It has 7 atoms and 70 electrons, hence there exists a large amount of electronic correlation energy to be calculated. The MRCI is an effective method to calculate the correlation energy. But by now no MRCI result of SF 6vibrational frequencies has been reported. So here we use MRCI/6-311G* to calculate the potential curves of A 1g, E g, T 2gand T 2uvibrational modes separately, deduce their expressions, then use the expressions to fit the curves, and finally obtain the vibrational frequencies. The results are then compared with those obtained by other theoretical methods including HF, MP2, CISD, CCSD(T) and B3LYP methods through using the same 6-311G* basis set. It is shown that the relative error to experimental result of the MRCI method is the least in the results from all these methods.
        通信作者:郭迎春,ycguo@phy.ecnu.edu.cn
      • 基金项目:国家自然科学基金(批准号: 12074418, 11774411)资助的课题
        Corresponding author:Guo Ying-Chun,ycguo@phy.ecnu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 12074418, 11774411).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

    • 位移坐标 $ {\mathrm{A}}_{1\mathrm{g}} $ $ {\mathrm{E}}_{\mathrm{g}} $ $ {\mathrm{E}}_{\mathrm{g}} $ $ {\mathrm{T}}_{2\mathrm{g}} $ $ {\mathrm{T}}_{2\mathrm{g}} $ $ {\mathrm{T}}_{2\mathrm{g}} $ $ {\mathrm{T}}_{2\mathrm{u}} $ $ {\mathrm{T}}_{2\mathrm{u}} $ $ {\mathrm{T}}_{2\mathrm{u}} $
      $ {\Delta x}_{1}, \Delta {y}_{1}, \Delta {z}_{1} $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, 0 $
      $ {\Delta x}_{2}, \Delta {y}_{2}, \Delta {z}_{2} $ $ r, \mathrm{0, 0} $ ${r}, \mathrm{0, 0}$ $ -r, \mathrm{0, 0} $ $ 0, r, 0 $ $ \mathrm{0, 0}, r $ $ \mathrm{0, 0}, 0 $ $ 0, r, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, r $
      $ {\Delta x}_{3}, {\Delta y}_{3}, \Delta {z}_{3} $ $ -r, \mathrm{0, 0} $ $ -r, \mathrm{0, 0} $ $ \mathrm{r}, \mathrm{0, 0} $ $ 0, -r, 0 $ $ \mathrm{0, 0}, -r $ $ \mathrm{0, 0}, 0 $ $ 0, r, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, r $
      $ {\Delta x}_{4}, \Delta {y}_{4}, \Delta {z}_{4} $ $ 0, r, 0 $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 2}r, 0 $ $ r, \mathrm{0, 0} $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, r $ $ \mathrm{0, 0}, 0 $ $ r, \mathrm{0, 0} $ $ \mathrm{0, 0}, -r $
      $ \Delta {x}_{5}, \Delta {y}_{5}, \Delta {z}_{5} $ $0,-r, 0$ $ \mathrm{0, 0}, 0 $ $ 0, -2 r, 0 $ $ -r, \mathrm{0, 0} $ $ \mathrm{0, 0}, 0 $ $ \mathrm{0, 0}, -r $ $ \mathrm{0, 0}, 0 $ $ r, \mathrm{0, 0} $ $ \mathrm{0, 0}, -r $
      $ {\Delta x}_{6}, \Delta {y}_{6}, \Delta {z}_{6} $ $ \mathrm{0, 0}, r $ $ \mathrm{0, 0}, -r $ $ \mathrm{0, 0}, -r $ $ \mathrm{0, 0}, 0 $ $ r, \mathrm{0, 0} $ $ 0, r, 0 $ $ 0, -r, 0 $ $ -r, \mathrm{0, 0} $ $ \mathrm{0, 0}, 0 $
      $ {\Delta x}_{7}, \Delta {y}_{7}, \Delta {z}_{7} $ $ \mathrm{0, 0}, -r $ $ \mathrm{0, 0}, r $ $ \mathrm{0, 0}, r $ $ \mathrm{0, 0}, 0 $ $ -r, \mathrm{0, 0} $ $ 0, -r, 0 $ $ 0, -r, 0 $ $ -r, \mathrm{0, 0} $ $ \mathrm{0, 0}, 0 $
      下载: 导出CSV

      MRCI/6-311G* HF
      /6-311G*
      MP2/6-311G* CISD/6-311G* CCSD(T)/6-311G* B3LYP/6-311g* Expt[12]
      $ {\omega }_{1}/\mathrm{c}{\mathrm{m}}^{-1} $ 809 824 726 806 719 706 787
      $ {\omega }_{2}/\mathrm{c}{\mathrm{m}}^{-1} $ 650 697 625 684 627 611 655
      $ {\omega }_{3}/\mathrm{c}{\mathrm{m}}^{-1} $ 542 588 502 541 500 467 524
      $ {\omega }_{4}/\mathrm{c}{\mathrm{m}}^{-1} $ 362 377 335 364 334 311 355
      l0/(10–10m) 1.558 1.547 1.586 1.557 1.586 1.593 1.565
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

    • [1] 曹山, 黎军, 刘元琼, 王凯, 林伟, 雷海乐.氮分子固体中配位环境对其分子振动的影响. 必威体育下载 , 2016, 65(3): 033103.doi:10.7498/aps.65.033103
      [2] 郝丹辉, 孔凡杰, 蒋刚.PuNO分子结构与势能函数. 必威体育下载 , 2015, 64(15): 153103.doi:10.7498/aps.64.153103
      [3] 熊晓玲, 魏洪源, 陈文.TiN分子基态(X2)结构和势能函数. 必威体育下载 , 2012, 61(1): 013401.doi:10.7498/aps.61.013401
      [4] 许永强, 彭伟成, 武华.YH,YD,YT分子基态的结构与势能函数. 必威体育下载 , 2012, 61(4): 043105.doi:10.7498/aps.61.043105
      [5] 肖夏杰, 韩晓琴, 刘玉芳.XF2(X=B,N)分子基态的结构与势能函数. 必威体育下载 , 2011, 60(6): 063102.doi:10.7498/aps.60.063102
      [6] 杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和.BeH, H2和BeH2的分子结构和势能函数. 必威体育下载 , 2009, 58(1): 178-184.doi:10.7498/aps.58.178
      [7] 蒋利娟, 刘玉芳, 刘振中, 韩晓琴.SiX2(X=H,F)分子的结构与势能函数. 必威体育下载 , 2009, 58(1): 201-208.doi:10.7498/aps.58.201
      [8] 王庆美, 任廷琦, 朱吉亮.BiH(D,T)分子基态结构与势能函数. 必威体育下载 , 2009, 58(8): 5266-5269.doi:10.7498/aps.58.5266
      [9] 王庆美, 任廷琦, 朱吉亮.GaH(D,T)分子基态结构与势能函数. 必威体育下载 , 2009, 58(8): 5270-5273.doi:10.7498/aps.58.5270
      [10] 李 权, 朱正和.AuZn和AuAl分子基态与低激发态的势能函数与热力学性质. 必威体育下载 , 2008, 57(6): 3419-3424.doi:10.7498/aps.57.3419
      [11] 徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋.密度泛函方法对SiO分子基态(X 1Σ+)势能函数的研究. 必威体育下载 , 2008, 57(12): 7577-7580.doi:10.7498/aps.57.7577
      [12] 孔凡杰, 杜际广, 蒋 刚.PdCO分子结构与势能函数. 必威体育下载 , 2008, 57(1): 149-154.doi:10.7498/aps.57.149
      [13] 朱应涛, 杨传路, 王美山, 董永绵.β-Si3N4电子结构和红外和拉曼频率的第一性原理研究. 必威体育下载 , 2008, 57(2): 1048-1053.doi:10.7498/aps.57.1048
      [14] 徐 梅, 汪荣凯, 令狐荣锋, 杨向东.BeH,BeD,BeT分子基态(X2Σ+)的结构与势能函数. 必威体育下载 , 2007, 56(2): 769-773.doi:10.7498/aps.56.769
      [15] 施德恒, 孙金锋, 马 恒, 朱遵略.7Li2分子2 3Σ+g激发态的解析势能函数、谐振频率及振动能级. 必威体育下载 , 2007, 56(4): 2085-2091.doi:10.7498/aps.56.2085
      [16] 李 权, 朱正和.CH, NH和OH自由基基态与低激发态分子结构与势能函数. 必威体育下载 , 2006, 55(1): 102-106.doi:10.7498/aps.55.102
      [17] 黄 萍, 朱正和.CrHn(n=0,+1,+2)分子及离子的势能函数. 必威体育下载 , 2006, 55(12): 6302-6307.doi:10.7498/aps.55.6302
      [18] 罗德礼, 蒙大桥, 朱正和.LiH,LiO和LiOH的分析势能函数与分子反应动力学. 必威体育下载 , 2003, 52(10): 2438-2442.doi:10.7498/aps.52.2438
      [19] 薛卫东, 王红艳, 朱正和, 张广丰, 邹乐西, 陈长安, 孙颖.CUO分子结构与势能函数. 必威体育下载 , 2002, 51(11): 2480-2484.doi:10.7498/aps.51.2480
      [20] 罗德礼, 孙颖, 刘晓亚, 蒋刚, 蒙大桥, 朱正和.UH和UH2分子的结构与势能函数. 必威体育下载 , 2001, 50(10): 1896-1901.doi:10.7498/aps.50.1896
    计量
    • 文章访问数:6946
    • PDF下载量:187
    • 被引次数:0
    出版历程
    • 收稿日期:2021-11-15
    • 修回日期:2021-12-14
    • 上网日期:2022-01-26
    • 刊出日期:2022-05-05

      返回文章
      返回
        Baidu
        map