-
The teleportation of Werner state in the graphene-based quantum channels under the dephasing environment is studied through the effective low-energy theory in this paper. The results show that the output entanglement normally reaches a higher level as the input entanglement increases, while the performance of the corresponding fidelity is opposite. Given the input state, the greater entanglement in the quantum channel can provide the higher-quality output state. For graphene-based quantum channels, the low temperature and weak Coulomb repulsive potential can decelerate the attenuation of entanglement resources in the dephasing environment. Moreover, when the temperature is lower than 40 K and the coulomb repulsive potential between electrons is less than 6 eV, the average fidelity of the output state reaches more than 80%. These results indicate that graphene has potential applications in quantum information.
-
Keywords:
- graphene nanoribbon/
- Werner state/
- quantum teleportation/
- dephasing
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] -
Alice对A1处的量子比特(1, 3)
和A2处的量子比特(2, 4)执行
联合贝尔基测量后所得结果为了复原Werner态Bob对B1和B2处的量子比特(5,6)
所执行的相应幺正操作$E_0^{{A_1}} \otimes E_0^{{A_2}}$ ${I^{{B_1}}}$, ${I^{{B_2}}}$ $E_0^{{A_1}} \otimes E_1^{{A_2}}$ ${I^{{B_1}}}$, $\sigma _x^{{B_2}}$ $E_0^{{A_1}} \otimes E_2^{{A_2}}$ ${I^{{B_1}}}$, $\sigma _y^{{B_2}}$ $E_0^{{A_1}} \otimes E_3^{{A_2}}$ ${I^{{B_1}}}$, $\sigma _z^{{B_2}}$ $E_1^{{A_1}} \otimes E_0^{{A_2}}$ $\sigma _x^{{B_1}}$, ${I^{{B_2}}}$ $E_1^{{A_1}} \otimes E_1^{{A_2}}$ $\sigma _x^{{B_1}}$, $\sigma _x^{{B_2}}$ $E_1^{{A_1}} \otimes E_2^{{A_2}}$ $\sigma _x^{{B_1}}$, $\sigma _y^{{B_2}}$ $E_1^{{A_1}} \otimes E_3^{{A_2}}$ $\sigma _x^{{B_1}}$, $\sigma _z^{{B_2}}$ $E_2^{{A_1}} \otimes E_0^{{A_2}}$ $\sigma _y^{{B_1}}$, ${I^{{B_2}}}$ $E_2^{{A_1}} \otimes E_1^{{A_2}}$ $\sigma _y^{{B_1}}$, $\sigma _x^{{B_2}}$ $E_2^{{A_1}} \otimes E_2^{{A_2}}$ $\sigma _y^{{B_1}}$, $\sigma _y^{{B_2}}$ $E_2^{{A_1}} \otimes E_3^{{A_2}}$ $\sigma _y^{{B_1}}$, $\sigma _z^{{B_2}}$ $E_3^{{A_1}} \otimes E_0^{{A_2}}$ $\sigma _z^{{B_1}}$, ${I^{{B_2}}}$ $E_3^{{A_1}} \otimes E_1^{{A_2}}$ $\sigma _z^{{B_1}}$, $\sigma _x^{{B_2}}$ $E_3^{{A_1}} \otimes E_2^{{A_2}}$ $\sigma _z^{{B_1}}$, $\sigma _y^{{B_2}}$ $E_3^{{A_1}} \otimes E_3^{{A_2}}$ $\sigma _z^{{B_1}}$, $\sigma _z^{{B_2}}$ -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49]
计量
- 文章访问数:4142
- PDF下载量:53
- 被引次数:0