搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

郭雨怡, 石富坤, 王群, 季振宇, 庄杰

A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields

Guo Yu-Yi, Shi Fu-Kun, Wang Qun, Ji Zhen-Yu, Zhuang Jie
PDF
HTML
导出引用
  • 纳秒级高压脉冲电场的生物医学应用是近年来新兴的交叉学科研究领域, 相比于微秒和毫秒级脉冲电场, 高压纳秒脉冲电场不仅能够导致细胞膜结构极化和介电击穿, 产生膜电穿孔, 还可以穿透至细胞内部, 引发诸如细胞骨架解聚、胞内钙离子释放及线粒体膜电位耗散等细胞器生物电效应, 吸引了学术界的广泛关注. 本文首先介绍高压纳秒脉冲电场及其细胞器生物电作用的物理模型; 然后对高压纳秒脉冲电场与细胞骨架、线粒体、内质网、细胞核等亚细胞结构的相互作用研究进行综述和总结; 强调高压纳秒脉冲电场的细胞器作用与细胞死亡、细胞间通信等生物效应之间的联系; 最后, 凝练当前高压纳秒脉冲电场在生物医学研究中的关键技术问题, 并对未来潜在的研究方向进行展望.
    The biomedical application of high-voltage nanosecond pulsed electric fields (nsPEFs) has become an emerging interdisciplinary research field in recent years. Compared with microsecond and millisecond pulsed electric fields, high-voltage nsPEFs can not only lead the cell membrane structure to polarize and dielectric break down the cell membrane structure, i.e. membrane electroporation, but also penetrate into the cell, triggering off organelle bioelectrical effects such as cytoskeleton depolymerization, intracellular calcium ion release, and mitochondrial membrane potential dissipation. Extensive attention has been attracted from related academic communities. In this article, the following aspects are involved. First, the physical model of high-voltage nsPEFs and its bioelectrical effects on cellular organelles are introduced. Then, the existing researches of the interactions of high-voltage nsPEFs with cytoskeleton, mitochondria, endoplasmic reticulum, cell nucleus and other subcellular structure are reviewed and summarized; the relationship between the influence on cellular organelles by high-voltage nsPEFs and the biological effects such as cell death and intercellular communication is highlighted. Finally, the key technical challenges to high-voltage nsPEFs in biomedical research are condensed, followed by the prospects of future research directions.
        通信作者:庄杰,jzhuang@sibet.ac.cn
      • 基金项目:国家重点研发计划(批准号: 2019YFC0119102, 2019YFC0118004, 2020YFC0122301)资助的课题
        Corresponding author:Zhuang Jie,jzhuang@sibet.ac.cn
      • Funds:Project supported by the National Key R&D Program of China (Grant Nos. 2019YFC0119102, 2019YFC0118004, 2020YFC0122301) .
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

    • 细胞器 细胞类型 脉冲宽度/ns 电场强度/(kV·cm–1) 主要结果概述
      细胞骨架 GH3, HeLa[47] 60 12 肌动蛋白丝变短、变细、碎片化、解聚、收缩、分离, 细胞弹性降低;
      微管屈曲、解聚、破碎;
      微管聚合速率和聚合数量发生变化;
      中间丝破坏;
      细胞通透性改变;
      细胞肿胀、起泡、细胞质颗粒化;
      细胞间通讯受抑制;
      细胞骨架的破坏受钙离子调控: 1)高钙离子浓度溶液中, nsPEFs处理会使微管解聚, 破坏肌动蛋白丝; 2) 低钙离子浓度溶液中, nsPEFs处理后微管显示正常结构
      BY-2[48] 10 33
      Jurkat, HeLa, SV40[49] 60 15, 60
      CHO-K1[50] 600 19.2
      Jurkat, U937, CHO-K1[51] 10 150
      WB-F344[52] 100 5—35
      U87-MG[53] 10, 100 44
      CHO[54] 600 16.2
      GUV[55] 3—10
      tubulin[56] 10 20
      U2OS[57]
      CHO-K1[58] 10, 60 27.7, 150
      HepG2[59] 450 8
      B16-F10[60] 300 12, 18, 26, 40, 60
      WB-F344, WB-Ras[61] 100 20
      U-937[62] 60 10
      线粒体 Jurkat[63] 60 0—60 线粒体膜通透性改变, 线粒体的通透性转换孔(MPTP)不可逆过度开放;
      线粒体膜电位损失;
      线粒体肿胀;
      线粒体膜蛋白受影响, 线粒体膜间隙蛋白 Cyt-C, AIF 释放入胞浆;
      调控线粒体凋亡途径, Caspase-3表达量增加, Bax 表达量增加;
      线粒体释放细胞色素C;
      影响线粒体信号传导途径;
      ATP消耗;
      胞内ROS水平升高
      N1-S1[36] 600 0—80
      Jurkat, U-937[46] 10 50, 150
      Jurkat[64] 600 0—60
      HeLa S3[65] 80 20
      HCT116, NCM460[66] 10, 600, 800 3, 4, 5
      Jurkat, B10-2[67] 10—300 ≤ 300
      Jurkat, HL-60[68] 10, 60, 300 150, 60, 25
      Jurkat, HL-60[34] 10—300 15—60
      Hela[69] 10, 20, 30, 50 40, 45
      CT-26 tumor cells[70] 10 22
      MCA205, McA-RH7777,
      JurkatE6-1[71]
      100 6—25
      4T1[72] 100 46—54
      内质网 Jurkat[73] 7, 10, 30 25 内质网穿孔、损伤;
      钙离子释放, 引发胞内钙离子浓度升高;
      内质网应激响应;
      免疫原性细胞死亡;
      肿瘤细胞内与内质网凋亡相关蛋白Caspase-3的释放量增加;
      内质网凋亡信号通路起作用
      Jurkat, HL-60[74] 60, 300 15—60
      Jurkat, HL-60[75] 10, 60, 300 26, 40, 60, 150, 300 (10 ns); 16, 26, 40, 60 (60 ns); 40 (300 ns)
      Newly outdated platelet[76] 300 0—30
      Cardiac cells from rats[77] 4 10—80
      Jurkat[15] 60 25, 50, 100
      NG108-15[78] 4 16.2
      CHO-K1[79] 60 3.7—30
      U937, CHO-K1, BPAE[80] 300
      HeLa, HEK293T, C2C12[40] 7, 10, 20 10—50
      HeLa, HEK293, MEF[81] 14 10, 20, 25, 30, 40, 50
      MG63[82] 60 6.7, 13.3, 16.7, 20,
      26.7, 33.3
      HeLa, MEF[83] 14, 70 80, 100 (14 ns), 30, 50, 70, 75 (70 ns)
      Bovine chromaffin cells[84] 5 170
      B16 F10, EL-4[39] 200 7
      Hela[85] 20, 500 100, 20
      Murine secondary oocytes[86] 10 4—10
      MEF[87] 60—300 30, 60
      CHO-K1, NG108[88] 300, 600 3.7, 7.4, 11, 1
      细胞核 HL-60[89] 10, 60 65 (10 ns), 25 (60 ns) 核膜穿孔;
      DNA双链破坏、DNA片段化;
      选择性降低DNA甲基化;
      核蛋白复合物改变, 抑制snRNA的生成, 改变亚核结构
      B16 F10[18,90,91] 300 40
      Jurkat[92] 10 150
      Jurkat, U-937[93] 10, 300 2.25, 4.5, 150, 290
      B16F10[60] 300 0—60
      E4 squamous cell[94] 300 0—60
      Jurkat[16] 60 10, 15, 25
      N1-S1[17] 600 0—80
      N1-S1[95] 100 50
      CHO[58] 10, 600 18.2, 27.7, 16.7
      HEK 293[96] 300 25.5
      HL-60[36] 80 20
      K562, CT26. WT[97] 600 50
      HL60, Jurkat, ALL[98] 10, 60, 300 26, 60, 150, 300
      B10-2, HL-60[99] 10, 50, 60, 300 26, 60, 75, 150
      溶酶体 CHO-K1[41] 1, 20, 600 16.2 溶酶体去膜化、溶酶体损伤;
      溶酶体运动受影响, 高钙离子浓度溶液下, 溶酶体迁移停止;
      CHO-K1[42] 600 16.2
      囊泡 Human eosinophils[100] 60 36, 53 囊泡穿孔;
      诱导细胞外囊泡的释放
      COS-7[101] 50 20—300
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

    • [1] 王蕾, 马玺越, 陈克安, 刘韬.自由场中大尺寸有源微穿孔板吸声器的低频吸声性能. 必威体育下载 , 2023, 72(6): 064304.doi:10.7498/aps.72.20222151
      [2] 庄杰, 韩瑞, 季振宇, 石富坤.量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 必威体育下载 , 2023, 72(14): 147701.doi:10.7498/aps.72.20230203
      [3] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波.红外及太赫兹辐照下细胞膜生物效应的研究进展. 必威体育下载 , 2022, (): .doi:10.7498/aps.71.20212030
      [4] 王澄瑶, 李旭, 卢晓云.COP-PDMS微流控芯片的制备及在太赫兹对肠道上皮细胞生物效应中的应用. 必威体育下载 , 2021, 70(24): 248706.doi:10.7498/aps.70.20211807
      [5] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波.红外及太赫兹辐照下细胞膜生物效应的研究进展. 必威体育下载 , 2021, 70(24): 248707.doi:10.7498/aps.70.20212030
      [6] 李元, 李林波, 温嘉烨, 倪正全, 张冠军.基于电致伸缩效应的水中纳秒脉冲放电起始机制. 必威体育下载 , 2021, 70(2): 024701.doi:10.7498/aps.70.20201048
      [7] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛.基于生物阻抗谱的细胞电学特性研究. 必威体育下载 , 2020, 69(16): 163301.doi:10.7498/aps.69.20200601
      [8] 田小飞, 张欣.稳态强磁场的细胞生物学效应. 必威体育下载 , 2018, 67(14): 148701.doi:10.7498/aps.67.20180378
      [9] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂.基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 必威体育下载 , 2017, 66(11): 114209.doi:10.7498/aps.66.114209
      [10] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊.用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器. 必威体育下载 , 2016, 65(15): 154204.doi:10.7498/aps.65.154204
      [11] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜.双绞铝丝纳秒电爆炸实验研究. 必威体育下载 , 2014, 63(20): 205203.doi:10.7498/aps.63.205203
      [12] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿.正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 必威体育下载 , 2013, 62(12): 124703.doi:10.7498/aps.62.124703
      [13] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波.1064 nm纳秒脉冲激光诱导硅表面微结构研究. 必威体育下载 , 2011, 60(2): 027901.doi:10.7498/aps.60.027901
      [14] 吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真.石英管对空气中锥-板结构纳秒脉冲放电的影响. 必威体育下载 , 2010, 59(11): 7917-7921.doi:10.7498/aps.59.7917
      [15] 宋有建, 胡明列, 谢辰, 柴路, 王清月.输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 必威体育下载 , 2010, 59(10): 7105-7110.doi:10.7498/aps.59.7105
      [16] 韩敬华, 冯国英, 杨李茗, 张秋慧, 贾 俊, 李 刚, 朱启华, 周寿桓.纳秒激光脉冲在空气中聚焦的临界自由电子密度问题. 必威体育下载 , 2008, 57(10): 6304-6310.doi:10.7498/aps.57.6304
      [17] 胡競丹, 蔡 静, 陈俊蓉, 李 权, 赵可清.六氮杂苯并菲及其衍生物电荷传输性质的理论研究. 必威体育下载 , 2008, 57(9): 5464-5468.doi:10.7498/aps.57.5464
      [18] 邵 涛, 孙广生, 严 萍, 谷 琛, 张适昌.纳秒脉冲下高能量快电子逃逸过程的计算. 必威体育下载 , 2006, 55(11): 5964-5968.doi:10.7498/aps.55.5964
      [19] 谭新玉, 张端明, 李智华, 关 丽, 李 莉.纳秒脉冲激光沉积薄膜过程中的烧蚀特性研究. 必威体育下载 , 2005, 54(8): 3915-3921.doi:10.7498/aps.54.3915
      [20] 孙大睿, 宋晏蓉, 张志刚, 刘永军, 柴 路, 王清月.用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能比较. 必威体育下载 , 2003, 52(4): 870-874.doi:10.7498/aps.52.870
    计量
    • 文章访问数:9358
    • PDF下载量:263
    • 被引次数:0
    出版历程
    • 收稿日期:2021-10-05
    • 修回日期:2021-11-23
    • 上网日期:2022-01-26
    • 刊出日期:2022-03-20

      返回文章
      返回
        Baidu
        map