-
沿面放电是破坏绝缘系统性能的原因之一. 聚酰亚胺常用于高频电力设备的气-固绝缘中, 为此利用密度泛函理论, 从原子分子层面探讨了在外电场下聚酰亚胺及其受极性基团OH –影响后的单分子链结构、能级与态密度、静电势、激发态等微观参数对陷阱形成以及沿面放电的影响. 结果表明, 外电场下, 聚酰亚胺分子结构卷曲, 偶极矩增加, 易于积聚电荷形成空间电荷中心, 尤属引入极性基团OH –后变化较明显; 聚酰亚胺分子中, 苯环区域形成空穴陷阱, 酰亚胺环区域形成电子陷阱, 且电子陷阱能级的数量较多, 其中空间电荷陷阱深度随外电场的增加逐渐变深; 聚酰亚胺分子在引入极性基团OH –后激发能降低, 使得分子内部的电子变得容易被激发; 电子与空穴的空间分离度随电场增加而降低, 利于空穴与电子的复合而发出光子.Surface discharge is one of the reasons for insulation failure. Polyimide (PI) is used in gas-solid insulation of high-frequency electric power equipment. Therefore, based on density functional theory, the effects of single molecular chain structure, energy level, density of states, electrostatic potential, excited state and other micro parameters under external electric field on trap formation and surface discharge of both PI and polar- group- OH –affected PI are discussed from the atomic and molecular level. The results show that the structure of PI is crimped and the dipole moment increases under external electric field, which is easy to accumulate charges to form space charge center, especially after the introduction of polar group OH –. In the PI molecules, hole traps are formed in the benzene ring region, and electron traps are formed in the imide ring region. The number of electron trap energy levels is large, in which the space charge trap depth gradually deepens with the increase of external electric field. After the introduction of polar group OH –, the excitation energy of PI molecules decreases, which makes the electrons inside the molecules excited easily. The spatial separation of electrons and holes decreases with the increase of electric field, which is conducive to the recombination of holes and electrons to emit photons.
-
Keywords:
- density functional theory/
- trap/
- excited state/
- surface discharge
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] -
N R(13, 14)/nm R(9, 10)/nm R(7, 9)/nm A(13, 14, 15)/(°) A(9, 7, 8)/(°) A(4, 5, 6)/(°) N= 1 1.391 1.422 1.422 121.041 126.108 114.756 N= 2 1.389 1.423 1.422 121.099 126.045 114.894 N= 3 1.389 1.421 1.422 121.115 126.011 114.883 F/a.u. PI PI-OH R(50, 55)/nm A(63, 70, 71)/(°) R(46, 51)/nm A(59, 66, 67)/(°) 0 1.411 121.099 1.420 121.162 0.001 1.411 121.330 1.420 121.145 0.002 1.423 121.472 1.421 121.117 0.003 1.424 121.501 1.426 120.049 0.004 1.425 121.534 1.426 119.595 0.005 1.426 121.580 1.427 118.302 0.006 1.428 121.669 1.428 117.915 0.007 1.430 121.707 1.428 116.818 0.008 1.433 121.761 1.429 116.387 0.009 1.436 121.792 1.430 116.008 0.010 1.440 121.917 1.432 115.833 F/a.u PI PI-OH EH/eV EL/eV EG/eV EH/eV EL/eV EG/eV 0 –7.661 –2.739 4.922 –7.487 –3.018 4.469 0.001 –7.666 –2.765 4.901 –7.451 –3.070 4.381 0.002 –7.674 –2.791 4.883 –7.405 –3.102 4.303 0.003 –7.655 –2.810 4.845 –7.326 –3.146 4.180 0.004 –7.638 –2.817 4.821 –7.285 –3.252 4.033 0.005 –7.602 –2.836 4.766 –7.039 –3.433 3.606 0.006 –7.564 –2.855 4.709 –6.902 –3.546 3.356 0.007 –7.535 –2.871 4.664 –6.645 –3.788 2.857 0.008 –7.502 –2.891 4.611 –6.438 –3.938 2.500 0.009 –7.495 –2.914 4.581 –6.259 –4.067 2.192 0.010 –7.499 –2.939 4.560 –6.116 –4.202 1.914 E/eV F/a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 PI EEA(a) 2.834 2.765 2.679 2.594 2.498 2.388 2.264 2.126 1.974 1.806 1.622 EEA(b) 2.721 2.639 2.204 2.116 1.899 1.701 1.509 1.279 1.006 0.718 0.408 Etrap 0.113 0.126 0.475 0.479 0.599 0.687 0.755 0.847 0.968 1.089 1.214 PI-OH EEA(a) 2.965 2.864 2.776 2.643 2.488 2.330 2.127 1.932 1.687 1.170 0.898 EEA(b) 2.639 2.503 2.258 2.008 1.798 1.571 1.329 1.063 0.781 0.482 0.164 Etrap 0.326 0.361 0.518 0.635 0.691 0.758 0.799 0.869 0.906 0.688 0.734 Eex/eV N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 N= 7 N= 8 PI 3.369 3.476 3.770 3.813 3.821 3.912 3.913 3.990 PI-OH 3.091 3.325 3.381 3.727 3.730 3.897 3.942 3.951 F/a.u. Sr/a.u. D/Å t/Å Orbital contribution(hole) Orbital contribution(electron) 0 0.383 3.998 1.665 MO 195-12.33% MO 197-76.94% MO 198-95.01% 0.010 0.409 3.628 1.234 MO 197-77.56% MO198-94.7% 注: MO代表分子轨道. -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]
计量
- 文章访问数:4146
- PDF下载量:92
- 被引次数:0