搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    杨亚帆, 王建州, 商翔宇, 王涛, 孙树瑜

    Molecular dynamics simulation of swelling properties of Ca-montmorillonite at high temperatures

    Yang Ya-Fan, Wang Jian-Zhou, Shang Xiang-Yu, Wang Tao, Sun Shu-Yu
    PDF
    HTML
    导出引用
    • 高温下蒙脱石的膨胀特性在核废料深部封存、二氧化碳封存及页岩气开发等应用中有着重要影响, 但相关机理尚不明确. 本工作使用分子动力学模拟为技术手段计算5 MPa和298—500 K等条件下, 1.40—4.00 nm晶面间距( d)的一系列饱和钙蒙脱石的膨胀压力. 以模拟所得的数值结果为依据, 基于水化效应、双电层效应和离子关联效应等模型推演膨胀压力随温度与 d的变化规律, 并与相应的实验数据进行对比. 模拟结果表明, 当 d较小时, 因为高温会弱化水化力的强度, 钙蒙脱石膨胀压力震荡的幅度降低, 同时水化力作用的 d的范围减小. 当 d较大时, 因为高温强化离子关联效应, 膨胀压力降低, 同时双电层力的作用的 d的范围增加. 在较高温度和较大 d时, 膨胀压力为收缩力, 阻碍膨胀. 这些膨胀压力的变化规律与前期钠蒙脱石体系的研究类似. 然而, 通过对比两种蒙脱石体系的模拟结果, 发现两种体系存在显著的差异—钙蒙脱石比钠蒙脱石更难膨胀到较大的 d.此模拟结果与前人实验观测的结果相符. 我们进一步将此差异归于钙蒙脱石的离子关联效应要远大于钠蒙脱石. 有别于分子模拟中对于离子关联效应的精确描述, 连续化的Poisson-Boltzmann方程因为忽略了离子关联效应, 从而无法表达出与两种体系模拟结果都相吻合的膨胀压力变化规律.
      The swelling of Ca-montmorillonite at elevated temperatures is important for many applications including geological disposal of radioactive waste, subsurface carbon sequestration, and shale gas exploration. However, the experimentally observed swelling behaviors of Ca-montmorillonite contacting liquid water and the temperature effects on the swelling pressure are not well understood. In this work, molecular dynamics simulations are carried out to study the swelling of Wyoming Ca-montmorillonite with a d-spacing ( d) range of 1.40–4.00 nm at 5 MPa and various temperatures (298–500 K). The ClayFF and SPC are adopted for modeling Ca-montmorillonite and water, respectively. The simulation box is measured to be 11.15, 3.66, and 28.00 nm in the x-, y-, and z-direction. Atomistic pistons are used to control the bulk pressure of the water environment, and the implicit walls are implemented for preventing the ions from leaking from the pore into the water environment. The clay atoms are fixed during the simulation and the swelling pressure is calculated through dividing the force by the area. The equilibrium time is at least 20 ns and the production time falls in a range of 50–88 ns. The swelling pressure results show that for small d, high temperature reduces the magnitude of the oscillating curve of swelling pressure and also reduces the range of dwhere hydration force dominates the swelling pressure. This temperature effect is due to the weakened hydration force as evidenced from the weakened water density distributions inside the pore. For large d, high temperature reduces the swelling pressure, which is consistent with the experimental result, and increases the range of dwhere double layer force dominates the swelling pressure. The reduction of the swelling pressure can be explained by the enhanced ion correlation that reduces the double layer force according to the strong coupling theory, given that the calculated coupling parameters at higher temperatures are smaller. The swelling pressures are negative at elevated temperatures and large d, which prevents the clay from further swelling. However, the classical Poisson-Boltzmann (PB) equation predicts the positive double layer force since the ion correlation effect is not considered in the PB equation. Furthermore, the calculated swelling free energy curve shows that at 298 K and 5 MPa, it is difficult for Ca-montmorillonite to swell beyond a d-spacing of around 1.9 nm, which is in good agreement with the experimental result. The energy barrier for Ca-montmorillonite to swell to large dis larger than that for Na-montmorillonite, which means that it is more difficult for Ca-montmorillonite to swell to large d. This behavior is consistent with experimental observation and can be explained by the larger ion correlation effect in the Ca-montmorillonite system. These findings enhance the understanding of swelling of Ca-montmorillonite at elevated temperatures and could help to engineer better barrier materials for nuclear waste storage.
          通信作者:杨亚帆,yafan.yang@cumt.edu.cn; 孙树瑜,shuyu.sun@kaust.edu.sa
        • 基金项目:国家自然科学基金重点项目(批准号: 51936001)、国家自然科学基金(批准号: 51874262)、阿卜杜拉国王科技大学(批准号: BAS/1/1351-01, URF/1/4074-01, URF/1/3769-01)和中国矿业大学引进人才科研启动经费(批准号: 102521155)资助的课题
          Corresponding author:Yang Ya-Fan,yafan.yang@cumt.edu.cn; Sun Shu-Yu,shuyu.sun@kaust.edu.sa
        • Funds:Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51936001), the National Natural Science Foundation of China (Grant No. 51874262), the King Abdullah University of Science and Technology (Grant Nos. BAS/1/1351-01, URF/1/4074-01, URF/1/3769-01), and the Talent Introduction Scientific Research Startup Foundation of China University of Mining and Technology, China (Grant No. 102521155)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

      • 原子种类 尺度参数$ {\sigma }_{i}/$nm 能量参数$ {\varepsilon }_{i}/$(kcal·mol–1) 电荷q/e
        O 0.31656 1.554 × 10–1 –0.8200
        H 0.00000 0.000 0.4100
        蒙脱石 羟基O 0.31656 1.554 × 10–1 –0.9500
        有取代的羟基O 0.31656 1.554 × 10–1 –1.0808
        羟基H 0.00000 0.000 0.4250
        桥联O 0.31656 1.554 × 10–1 –1.0500
        有八面体取代的桥连O 0.31656 1.554 × 10–1 –1.1808
        有四面体取代的桥连O 0.31656 1.554 × 10–1 –1.1688
        四面体Si 0.33020 1.841 × 10–6 2.1000
        四面体Al 0.33020 1.841 × 10–6 1.5750
        八面体Al 0.42712 1.330 × 10–6 1.5750
        八面体Mg 0.52643 9.030 × 10–7 1.3600
        离子 Ca 0.28720 1.000 × 10–1 2.0000
        下载: 导出CSV

        晶面间距/nm 膨胀压力/MPa 膨胀压力的标准差/MPa
        T= 298 K T= 400 K T= 500 K T= 298 K T= 400 K T= 500 K
        1.40 577.940 275.174 263.519 27.583 15.886 2.875
        1.50 75.841 110.869 157.569 2.784 5.279 4.072
        1.60 40.637 84.617 92.147 1.887 0.719 0.482
        1.70 –6.800 10.744 23.476 0.689 0.155 0.609
        1.75 10.575 16.781 20.106 0.349 0.408 0.445
        1.80 22.749 25.890 23.449 0.195 0.286 0.401
        1.85 13.275 14.241 13.884 0.285 1.186 0.364
        1.90 3.893 5.913 6.174 0.482 0.629 0.077
        1.95 –4.018 –2.307 0.121 0.369 0.149 0.858
        2.00 –2.926 –0.923 –0.730 0.325 0.350 0.142
        2.10 3.313 3.142 0.664 0.583 0.184 0.423
        2.15 2.276 1.388 –1.376 0.361 0.411 0.401
        2.20 1.044 –0.584 –2.034 0.220 0.144 0.177
        2.30 –0.528 0.103 –1.714 0.404 0.442 0.176
        2.40 –0.246 –0.184 –1.763 0.126 0.291 0.204
        2.60 0.844 –0.639 –2.068 0.402 0.198 0.291
        3.00 –0.082 –0.502 –1.084 0.130 0.223 0.244
        3.50 0.050 –0.331 –0.572 0.107 0.125 0.060
        4.00 0.048 0.003 –0.084 0.193 0.057 0.158
        下载: 导出CSV

        温度T/K 298 400 500
        水介电常数 $ {\varepsilon }_{\mathrm{b}} $ 63.58a 40.01a 23.23a
        耦合参数 ${\Xi }$ 30.38 42.58 80.84
        a数据源于文献[1].
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

      • [1] 张洪硕, 周勇壮, 沈咏, 邹宏新.线型离子阱中钙离子库仑晶体结构和运动轨迹模拟. 必威体育下载 , 2023, 72(1): 013701.doi:10.7498/aps.72.20221674
        [2] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明.U1–xThxO2混合燃料力学性能的分子动力学模拟. 必威体育下载 , 2021, 70(12): 122801.doi:10.7498/aps.70.20202239
        [3] 李兴欣, 李四平.退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 必威体育下载 , 2020, 69(19): 196102.doi:10.7498/aps.69.20200836
        [4] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽.基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 必威体育下载 , 2015, 64(12): 126102.doi:10.7498/aps.64.126102
        [5] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来.修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性. 必威体育下载 , 2013, 62(9): 095201.doi:10.7498/aps.62.095201
        [6] 汪俊, 张宝玲, 周宇璐, 侯氢.金属钨中氦行为的分子动力学模拟. 必威体育下载 , 2011, 60(10): 106601.doi:10.7498/aps.60.106601
        [7] 李勇, 刘锦超, 芦鹏飞, 杨向东.从常温常压到超临界乙醇的分子动力学模拟. 必威体育下载 , 2010, 59(7): 4880-4887.doi:10.7498/aps.59.4880
        [8] 颜超, 段军红, 何兴道.低能原子沉积在Pt(111)表面的分子动力学模拟. 必威体育下载 , 2010, 59(12): 8807-8813.doi:10.7498/aps.59.8807
        [9] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏.类金刚石薄膜力学特性的分子动力学模拟. 必威体育下载 , 2010, 59(8): 5687-5691.doi:10.7498/aps.59.5687
        [10] 孟丽娟, 李融武, 刘绍军, 孙俊东.异质原子在Cu(001)表面扩散的分子动力学模拟. 必威体育下载 , 2009, 58(4): 2637-2643.doi:10.7498/aps.58.2637
        [11] 开花, 李运超, 郭德成, 李双, 李之杰.斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟. 必威体育下载 , 2009, 58(7): 4888-4894.doi:10.7498/aps.58.4888
        [12] 张然, 何军, 彭增辉, 宣丽.向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 必威体育下载 , 2009, 58(8): 5560-5566.doi:10.7498/aps.58.5560
        [13] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊.Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 必威体育下载 , 2008, 57(5): 3160-3165.doi:10.7498/aps.57.3160
        [14] 谢 芳, 朱亚波, 张兆慧, 张 林.碳纳米管振荡的分子动力学模拟. 必威体育下载 , 2008, 57(9): 5833-5837.doi:10.7498/aps.57.5833
        [15] 孟利军, 张凯旺, 钟建新.硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 必威体育下载 , 2007, 56(2): 1009-1013.doi:10.7498/aps.56.1009
        [16] 赵九洲, 刘 俊, 赵 毅, 胡壮麒.压力对非晶铜形成影响的分子动力学模拟. 必威体育下载 , 2007, 56(1): 443-445.doi:10.7498/aps.56.443
        [17] 李 瑞, 胡元中, 王 慧, 张宇军.单壁碳纳米管在石墨基底上运动的分子动力学模拟. 必威体育下载 , 2006, 55(10): 5455-5459.doi:10.7498/aps.55.5455
        [18] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建.不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 必威体育下载 , 2005, 54(9): 4313-4318.doi:10.7498/aps.54.4313
        [19] 李 欣, 胡元中, 王 慧.磁盘润滑膜全氟聚醚的分子动力学模拟研究. 必威体育下载 , 2005, 54(8): 3787-3792.doi:10.7498/aps.54.3787
        [20] 李之杰, 潘正瑛, 朱 靖, 魏 启, 王月霞, 臧亮坤, 周 亮, 刘提将.离子束辅助沉积对类金刚石膜结构影响的计算机模拟. 必威体育下载 , 2005, 54(5): 2233-2238.doi:10.7498/aps.54.2233
      计量
      • 文章访问数:3936
      • PDF下载量:85
      • 被引次数:0
      出版历程
      • 收稿日期:2021-08-24
      • 修回日期:2021-09-29
      • 上网日期:2022-02-10
      • 刊出日期:2022-02-20

        返回文章
        返回
          Baidu
          map