-
热电材料无需提供其他能量就能直接实现热能和电能的相互转换, 是一种新型能源材料, 然而当前热电材料的发展现状严重制约了热电器件的工程化应用, 提高现有热电材料的热电性能或研发具有优异性能的新型热电材料是热电领域永恒的研究主题. 近年来, MAX及其衍生 MXene相材料由于特有的结构性能而逐渐进入了科研工作者的视线, MAX相的晶体结构由 M n+1 X n结构单元与 A元素单原子面交替堆垛排列而成, MAX中 A层原子被刻蚀之后可以制备得到对应的衍生二维 MXene相, MAX及其衍生 MXene相陶瓷兼具金属和陶瓷的特性, 具有良好的导热导电性能, 有望成为一种非常有前景的热电材料. 本文简要综述了近年来 MAX相及其衍生 MXene相材料的制备技术和热电性能的发展现状, 并针对 MAX及其衍生 MXene相材料的特性提出了一些改善热电性能的可行性方案, 据此展望了 MAX相以及 MXene材料在未来的发展方向和前景.Thermoelectric materials, a kind of new energy material, can directly convert heat energy into electric energy, and vice versa, without needing any other energy conversion. However, the present development status of thermoelectric materials severely restricts their engineering applications in thermoelectric devices. Improving the thermoelectric performances of existing thermoelectric materials and exploring new thermoelectric materials with excellent performance are eternal research topics in thermoelectricity field. In recent years, the MAXphases and their derived MXene phases have gradually received the attention of researchers due to their unique microstructures and properties. The crystal structure of MAXphases is comprised of M n+1 X nstructural units and the single atomic plane of A stacked alternately. The two-dimensional MXene phase derived can be prepared after the atoms in the A-layer of MAXhave been etched. The MAXphases and their derived MXene phases have both metal feature and ceramic feature, and also have good thermal conductivity and electric conductivity, and they are anticipated to be the promising thermoelectric materials. In this paper, the present development status of the preparation technology and the thermoelectric properties of MAXphases and MXene are reviewed. Finally, some feasible schemes to improve the thermoelectric properties of MAXand its derived MXene phase materials are proposed, and the development direction and prospect of MAXphases and MXene are prospected as well.
-
Keywords:
- thermoelectric materials/
- MAX/
- MXene/
- review
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] -
物相种类 测试温度
/K热膨胀系数
/(10-6K-1)热导率
/(W·m–1·K–1)电导率
/(106S·m–1)塞贝克系数/(μV·K–1) 211相 Cr2AlC 473 12.50 17.5 1.8 — Ti2AlC 300 (8.10 ± 0.50) 46.0 2.8 — Nb2AlC 300 8.10 20.0 — Ti2SnC 300 10.00 ± 2.00 — 14.0 — Ti2SC 300 8.40 60..0 1.8 –12.7 312相 Ti3AlC2 85 9.00 ± 0.20 26.5 0.22 Ti3SiC2 300 9.20 46.0 — 413相 Nb4AlC3 300 5.75 13.5 — MXene 带隙/eV 迁移率/(cm2·V–1·s–1) 计算方法/实验值 参考文献 Sc2CF2 1.0 1000—5000 (e)
200—500 (h)PBE [80-83] 1.85 HSE06 [82] Sc2(OH)2 0.45 2000 (e)
50—240 (h)PBE [80-83] 0.845 HSE06 [82] Sc2CO2 1.8 PBE [80,82] 2.87 HSE06 [82] Sc3(CN)F2 1.18 200—1300 (e)
80—1000 (h)HSE06 [84] Ti2CO2 0.17—0.26 250—610 (e)
20000—74000 (h)PBE [80-82,85] 0.9 70—150 (e)
10000—40000 (h)HSE06 [82,86,87] 1.03 2—900 (e)
4000—8000 (h)HSE06 [88] Ti3C2Tx(T= O, OH, F) 0.7±0.2 (e) Experimental [89] 1.06 (e) Experimental [90] 0.66 Experimental [91] Zr2CO2 0.88—0.97 PBE [80,82] 0.66 PBE [81] 1.70 150 (e)
1400—17500 (h)HSE06 [82,87] 1.58 14—376 (e)
770—1950 (h)HSE06 [88] 1.34 mBJ [92] Hf2CO2 0.8—1.0 PBE [80-82] 1.66 77—330 (e)
1000—34000 (h)HSE06 [82,87] 1.78 24—700 (e)
620—1300 (h)HSE06 [88] (Zr0.5Hf0.5)2CO2 1.74 45—1460 (e)
1500—6200 (h)PBE [93] Mo2CF2 0.25—0.30 PBE [81,82] 0.86 HSE06 [82] Mo2CCl2 0.05 PBE [81] Mo2C(OH)2 0.1 PBE [81] W2CO2 0.0683 HSE06 [82] Mo2TiC2O2 0.04 PBE [94,95] 0.10—0.17 HSE06 [94-96] Mo2TiC2(OH)2 0.05 PBE [97] Cr2CF(OH) 0.383 PBE [98] Cr2CF2 1.105 PBE [98] Cr2C(OH)2 0.396 PBE GGA [98] Mo2ZrC2O2 0.066 PBE [95] 0.11—0.13 HSE06 [95,96] Mo2HfC2O2 0.154 PBE [95] 0.20—0.24 HSE06 [95,96] W2TiC2O2 0.29 HSE06 [96] W2ZrC2O2 0.28 HSE06 [96] W2HfC2O2 0.41 HSE06 [96] Lu2CF2 2.07 200—1000 (e)
14—6000 (h)HSE06 [99] Lu2C(OH)2 1.28 100000—200000 (e)
12—14000 (h)HSE06 [99] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99]
计量
- 文章访问数:11807
- PDF下载量:525
- 被引次数:0