-
复杂网络中节点重要性的评估是网络特性研究中的一项重要课题, 相关研究具有广泛的应用. 目前提出了许多方法来评估网络中节点的重要性, 然而大多数方法都存在评估角度片面或者时间复杂度过高的不足. 为了突破现有方法的局限性, 本文提出了一种. 该方法兼顾节点的局部和全局拓扑信息, 综合考察节点的结构洞特征和K壳中心性, 并充分考虑节点及其邻域节点的影响. 为了验证该方法的有效性, 本文采用单调性指标、SIR模型和Kendall相关系数作为评价标准, 在8个来自不同领域的真实网络上与其他方法进行比较. 实验结果表明, 此方法能更有效和准确地评估网络节点的重要性, 可以显著区分不同节点的重要性. 此外, 该方法的时间复杂度仅为
$ O({n^2}) $ , 适用于大型复杂网络.Evaluating the importance of nodes in complex networks is an important topic in the research of network characteristics. Its relevant research has a wide range of applications, such as network supervision and rumor control. At present, many methods have been proposed to evaluate the importance of nodes in complex networks, but most of them have the deficiency of one-sided evaluation or too high time complexity. In order to break through the limitations of existing methods, in this paper a novel method of evaluating the importance of complex network nodes is proposed based on Tsallis entropy. This method takes into account both the local and global topological information of the node. It considers the structural hole characteristics and K-shell centrality of the node and fully takes into account the influence of the node itself and its neighboring nodes. To illustrate the effectiveness and applicability of this method, eight real networks are selected from different fields and five existing methods of evaluating node importance are used as comparison methods. On this basis, the monotonicity index, SIR (susceptible-infectious-recovered) model, and Kendall correlation coefficient are used to illustrate the superiority of this method and the relationship among different methods. Experimental results show that this method can effectively and accurately evaluate the importance of nodes in complex networks, distinguish the importance of different nodes significantly, and can show good accuracy of evaluating the node importance under different proportions of nodes. In addition, the time complexity of this method is$ O({n^2}) $ , which is suitable for large-scale complex networks.-
Keywords:
- node importance/
- Tsallis entropy/
- structural hole/
- K-shell
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] -
Algorithm 1:TSM algorithm. Input: Network $ G(V, E) $
Output: TSM value for each node
1. Find neighboring nodes $\varGamma (i)$of node $ {v_i} $
2. Compute the restraint coefficient ${\rm{RC}}_i$ of node $ {v_i} $
3. Compute the ${\rm Ks}_i$ value of node $ {v_i} $according to formula $k_i^{\rm m} = k_i^{\rm r} + \lambda k_i^{\rm e}$
4. Compute $ {q_i} $ for node $ {v_i} $
5.Fornode $ {v_j} $ in $\varGamma (i)$ do
6. ratio = ($1 - {\rm{RC}}_j$)/${\rm{sum}}$($1 - {\rm{RC}}$(all neighbors of $ {v_i} $))
7. $ T({v_i}) $= (pow(ratio, $ {q_i} $)-ratio)/(1 – $ {q_i} $)
8.End For
9. Compute ${\rm{IC} }\left( { {v_i} } \right) = \left( {1 - {\rm{RC} }_i } \right)*T\left( { {v_i} } \right)$
10.Fornode $ {v_j} $ in $\varGamma (i)$ do
11. ${\rm{Cnc}}\left( { {v_i} } \right) = {\rm{sum}}\left( {{\rm{IC}}\left( { {v_j} } \right)} \right)$
12.End For
13.Fornode $ {v_j} $ in $\varGamma (i)$ do
14. ${\rm{TSM}}\left( { {v_i} } \right) = {\rm{sum}}\left( {{\rm{Cnc}}\left( { {v_j} } \right)} \right)$
15.End ForMethod Category Time complexity $ {\text{DC}} $ Local $ O(n) $ $ {\text{BC}} $ Global $ O({n^3}) $or$ O(nm) $ $ {\text{MDD}} $ Global $ O(n) $ ${\text{N-Burt} }$ Local $ O({n^2}) $ $ {\text{Cnc + }} $ Hybrid $ O(n) $ $ {\text{AAD}} $ Hybrid $ O({n^3}) $ or $ O(nm) $ $ {\text{IKS}} $ Hybrid $ O(n) $ $ {\text{TSM}} $ Hybrid $ O({n^2}) $ Network $ n $ $ m $ $\langle k \rangle$ $ c $ $\langle d \rangle$ ${\beta _{\rm th} }$ $\beta $ Karate 34 78 4.5880 0.5706 2.4082 0.1287 0.25 Dolphins 62 159 5.1290 0.2590 3.3570 0.1470 0.15 Polbooks 105 441 8.4000 0.4880 3.0788 0.0838 0.10 Jazz 198 2742 27.6970 0.6175 2.2350 0.0259 0.04 USAir 332 2126 12.8072 0.7494 2.7381 0.0225 0.03 C.Elegans 453 2025 8.9404 0.6465 2.4553 0.0249 0.03 Email 1133 5451 9.6222 0.2540 3.6060 0.0535 0.05 PowerGrid 4941 6594 2.6691 0.0801 18.9892 0.2583 0.25 排名 节点 DC 节点 BC 节点 MDD 节点 N-Burt 节点 Cnc+ 节点 AAD 节点 IKS 节点 TSM 1 ${v_{34}}$ 17 ${v_1}$ 0.4119 ${v_{34}}$ 11.9 ${v_{34}}$ 0.1682 ${v_{34}}$ 1156 ${v_{34}}$ 17.4666 ${v_1}$ 1.5215 ${v_{34}}$ 89.8687 2 ${v_1}$ 16 ${v_{34}}$ 0.2862 ${v_1}$ 11.2 ${v_1}$ 0.1731 ${v_1}$ 1024 ${v_1}$ 16.4976 ${v_{34}}$ 1.4782 ${v_1}$ 81.8535 3 ${v_{33}}$ 12 ${v_{33}}$ 0.1367 ${v_{33}}$ 8.7 ${v_3}$ 0.2257 ${v_{33}}$ 576 ${v_{33}}$ 12.6498 ${v_3}$ 1.2610 ${v_{33}}$ 72.0759 4 ${v_3}$ 10 ${v_3}$ 0.1352 ${v_3}$ 7.6 ${v_{33}}$ 0.2746 ${v_3}$ 400 ${v_3}$ 10.7712 ${v_{33}}$ 1.2307 ${v_3}$ 70.7235 5 ${v_2}$ 9 ${v_{32}}$ 0.1301 ${v_2}$ 6.9 ${v_{32}}$ 0.2793 ${v_2}$ 324 ${v_2}$ 9.8490 ${v_2}$ 1.0208 ${v_2}$ 59.4435 6 ${v_4}$ 6 ${v_9}$ 0.0526 ${v_4}$ 5.1 ${v_9}$ 0.3266 ${v_4}$ 144 ${v_4}$ 7.2111 ${v_9}$ 0.9425 ${v_9}$ 47.6431 7 ${v_{32}}$ 6 ${v_2}$ 0.0508 ${v_{32}}$ 5.1 ${v_2}$ 0.3357 ${v_{32}}$ 108 ${v_{32}}$ 6.7095 ${v_{14}}$ 0.9411 ${v_{14}}$ 46.9374 8 ${v_9}$ 5 ${v_{14}}$ 0.0432 ${v_{14}}$ 5 ${v_{14}}$ 0.3541 ${v_9}$ 100 ${v_9}$ 6.4033 ${v_{32}}$ 0.9004 ${v_4}$ 45.5295 9 ${v_{14}}$ 5 ${v_{20}}$ 0.0306 ${v_9}$ 4.7 ${v_{28}}$ 0.3674 ${v_{14}}$ 100 ${v_{14}}$ 6.4033 ${v_4}$ 0.8343 ${v_{32}}$ 41.3938 10 ${v_{24}}$ 5 ${v_6}$ 0.0282 ${v_{24}}$ 4.1 ${v_{31}}$ 0.3810 ${v_{24}}$ 75 ${v_{24}}$ 5.8310 ${v_{31}}$ 0.7137 ${v_{31}}$ 37.1209 11 ${v_6}$ 4 ${v_7}$ 0.0282 ${v_8}$ 4 ${v_{20}}$ 0.3935 ${v_8}$ 64 ${v_{31}}$ 5.6569 ${v_{24}}$ 0.7027 ${v_8}$ 35.7453 12 ${v_7}$ 4 ${v_{28}}$ 0.0210 ${v_{31}}$ 4 ${v_{29}}$ 0.4115 ${v_{31}}$ 64 ${v_8}$ 5.6569 ${v_8}$ 0.6996 ${v_{24}}$ 33.3428 13 ${v_8}$ 4 ${v_{24}}$ 0.0166 ${v_{28}}$ 3.7 ${v_{24}}$ 0.4348 ${v_6}$ 48 ${v_6}$ 5.0001 ${v_{20}}$ 0.6397 ${v_{28}}$ 29.9028 14 ${v_{28}}$ 4 ${v_{31}}$ 0.0136 ${v_{30}}$ 3.7 ${v_4}$ 0.4684 ${v_7}$ 48 ${v_7}$ 5.0001 ${v_{30}}$ 0.6050 ${v_{20}}$ 29.6927 15 ${v_{30}}$ 4 ${v_4}$ 0.0112 ${v_6}$ 3.4 ${v_{26}}$ 0.4845 ${v_{28}}$ 48 ${v_{28}}$ 5.0000 ${v_{28}}$ 0.6039 ${v_{30}}$ 29.1552 Network $ M{\text{(DC)}} $ M(BC) M(MDD) $M{\text{(N-Burt)} }$ $ M{\text{(Cnc + )}} $ M(ADD) $ M{\text{(IKS)}} $ $ M{\text{(TSM)}} $ Karate 0.7079 0.7723 0.7536 0.9542 0.9472 0.8395 0.9612 0.9542 Dolphins 0.8312 0.9623 0.9041 0.9623 0.9895 0.9623 0.9905 0.9979 Polbooks 0.8252 0.9974 0.9077 1 0.9971 0.9996 1 1 Jazz 0.9659 0.9885 0.9883 0.9983 0.9993 0.9981 0.9994 0.9994 USAir 0.8586 0.6970 0.8871 0.9453 0.9945 0.9068 0.9943 0.9951 C.Elegans 0.7922 0.8740 0.8748 0.9983 0.9980 0.9381 0.9974 0.9990 Email 0.8874 0.9400 0.9229 0.9650 0.9991 0.9629 0.9995 0.9999 PowerGrid 0.5927 0.8313 0.6928 0.8770 0.9568 0.8748 0.9667 0.9999 Network $\tau ({\text{DC, }}\sigma {\text{)}}$ $\tau ({\text{BC, }}\sigma {\text{)}}$ $\tau ({\text{MDD, }}\sigma {\text{)}}$ $\tau ({\text{N-Burt, } }\sigma {\text{)} }$ $\tau ({\text{Cnc + , }}\sigma {\text{)}}$ $\tau ({\text{AAD, }}\sigma {\text{)}}$ $\tau ({\text{IKS, }}\sigma {\text{)}}$ $\tau ({\text{TSM, }}\sigma {\text{)}}$ Karate 0.6435 0.5651 0.6756 0.7683 0.9258 0.6591 0.8445 0.9637 Dolphins 0.7768 0.5643 0.8181 0.7282 0.8611 0.7532 0.8526 0.9492 Polbooks 0.7528 0.3579 0.8029 0.7037 0.9098 0.7691 0.9165 0.9436 Jazz 0.8185 0.4628 0.8503 0.8216 0.9132 0.8235 0.8804 0.9363 USAir 0.6982 0.4744 0.7175 0.7929 0.9047 0.6995 0.9055 0.9461 C.Elegans 0.6376 0.4711 0.6521 0.6251 0.8127 0.659 0.8217 0.8570 Email 0.7911 0.6467 0.8015 0.7735 0.8980 0.7797 0.8758 0.9250 PowerGrid 0.5469 0.4167 0.5786 0.4298 0.7341 0.5563 0.7399 0.8207 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]
计量
- 文章访问数:6558
- PDF下载量:190
- 被引次数:0