-
近年来, 二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)由于其出色的电学和光学特性在光电探测领域被广泛研究. 相比于报道较多的场效应晶体管型以及异质结型器件, 同质结器件在光电探测方面具有独特优势. 本文将聚焦基于TMDCs同质结的光电探测器的研究, 首先介绍同质结光电器件的主要工作原理, 然后以载流子调控方式为分类依据总结TMDCs同质结的几种制备方法及其获得的电学和光电性能. 此外, 本文还对同质结器件中光生载流子的输运过程进行具体分析, 阐述横向p-i-n结构具有超快光电响应速度的原因. 最后对基于TMDCs同质结的光电探测器的研究进行总结与前景展望.In recent years, two-dimensional transition metal chalcogenides (TMDCs) have been widely studied in the field of photodetection due to their excellent electronic and optical properties. Compared with the more reported field-effect transistor and heterojunction devices, homojunction devices have unique advantages in photodetection. This article focuses on the researches of photodetectors based on the homojunctions of TMDCs. First, the working principle of homojunction optoelectronic device is introduced. Then, the reported TMDCs based homojunctions are classified and summarized according to the adopted carrier modulation techniques. In addition, this article also specifically analyzes the transport process of photogenerated carriers in homojunction device, and explains why the lateral p-i-n homojunction exhibits fast photoresponse speed. Finally, the research progress of the TMDCs based homojunction photodetectors is summarized and the future development is also prospected.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] -
材料 器件结构 载流子调控方式 整流比 理想
因子光源
波长/nm偏置电压
Vpn/V响应度/
mA·W–1比探测率/
Jones响应时间 文献 n型 p型 上升/ms 下降/ms 单层WSe2 横向p-n 正栅压 负栅压 105 1.9 532 2 210 — — — [38] 单层WSe2 横向p-n 正栅压 负栅压 — 2.14 532 –1 0.7 — 10.4 9.8 [41] 多层MoTe2 横向p-n 铁电极化 铁电极化 5×105 2 520 0 5 3×1012 0.03 0.045 [52] 多层MoS2 横向p-n 铁电极化 铁电极化 105 1.7 532 0 15 — 0.01 0.02 [54] 少层MoTe2 横向p-n UV诱导电场 UV诱导电场 103 2.1 532 0 160 — 2 2 [57] 多层MoS2 横向p-n — AuCl3 60 1 (Vg= –40 V) 500 1.5 5070 3×1010 100 200 [58] 少层MoS2 垂直p-n BV AuCl3 100 1.6 655 –1 30 — — — [59] 少层WSe2 横向p-n N2H4 — ~103 — 470 –5 30 6.18×108 2 2 [60] 多层WSe2 横向p-n N2H4 — 105 1.1 635 –5 (Vg= –40 V) 468 2.5×109 4 4 [37] 少层MoSe2 横向p-n PPh3 MoOx(退火) 104 1.2 532 0 1300 — — — [61] 多层WSe2 横向p-n PEI 负栅压 103 1.66 520 0 80 1011 0.2 0.06 [63] 少层WSe2 横向p-n CTAB — 103 1.64 450 –1.5 3×104 1011 7.8 7.7 [64] 多层WSe2 横向p-n — N2O plasma 106(Vg= –60 V) 3.1 520 1 2490 — 8 30 [66] 多层WSe2 横向p-n — WOx(O2Plasma) — — 520 1 250 7.7×109 41.8 2289.8 [67] 多层WSe2 横向p-n 正栅压 WOx(laser) — — 633 0 800 — 0.136 0.039 [69] 多层MoTe2 垂直p-n DUV(N2) — 104 1.05 530 0 850 — — — [70] 多层MoTe2 横向p-n DUV(N2) — 2.5×104 ~1 850 0 5500 — 29 38 [71] 少层MoS2 垂直p-n 元素掺杂(Fe) 元素掺杂(Nb) — ~2.5 660 0 25 — 80 80 [86] 单层MoS2 横向n+–n PSS诱导
缺陷修复(n+)—(n) ~150 1.6 575 0 308 — 810 750 [91] 双层MoS2 垂直n+–n PSS诱导
缺陷修复(n+)—(n) 72 1.6 532 0 54.6 — 3100 3800 [92] 多层WSe2 横向p-i-n WSe2–y
(Ar Plasma)WOx(O2plasma) 106 1.14 450 0 105 2.2×1013 0.000264 0.000552 [68] MoS2 横向单层-多层 — — 103(Vg= 10 V) 1.95(Vg= 5 V) 470 — 106 7×1010 2 2000 [93] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103]
计量
- 文章访问数:9820
- PDF下载量:383
- 被引次数:0