搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    张山, 张红伟, 苗淼, 冯苗苗, 雷洪, 王强

    Cellular automaton simulation on cooperative growth of M7C3carbide and austenite in high Cr cast irons

    Zhang Shan, Zhang Hong-Wei, Miao Miao, Feng Miao-Miao, Lei Hong, Wang Qiang
    PDF
    HTML
    导出引用
    • 高铬铸铁中M 7C 3碳化物大小适中、弥散均匀分布, 有利于提高合金的耐磨性. 为分析凝固过程中M 7C 3碳化物晶粒在基体中的形貌及分布、M 7C 3碳化物与奥氏体晶粒生长的相互作用、引起的溶质偏聚对最终M 7C 3碳化物粒径分布的影响, 本文开发了Fe-C-Cr三元合金小面晶M 7C 3碳化物与奥氏体晶粒共生长的二维微观元胞自动机模型, 模型中加入潜热释放对凝固过程温度场的影响, 由C, Cr两溶质界面扩散共同确定晶体生长速度, 由凝固路径数据表插值获取液相元胞的溶质平衡浓度, 设定M 7C 3碳化物邻胞结构并优化形状因子来保持M 7C 3碳化物小面晶形貌, 模拟了Fe-4%C-17%Cr三元合金(C和Cr的质量分数分别为4%和17%)初生M 7C 3碳化物和共晶奥氏体晶粒的生长演变过程. 研究表明, M 7C 3碳化物和奥氏体晶粒各自的生长速度随着界面液相中C, Cr溶质的超饱和度和贝克列数的增大而增大; 随着奥氏体的析出和晶粒生长, M 7C 3碳化物晶粒的生长速度明显增快; 当奥氏体晶粒逐渐接触并包围M 7C 3碳化物晶粒时, 两相晶粒生长速度逐渐降低. 凝固过程中, 奥氏体晶粒生长向外排出C, Cr溶质, 与吸收C, Cr溶质生长的M 7C 3碳化物晶粒互补, 致使二者生长互相促进, 最终奥氏体晶粒包围M 7C 3碳化物晶粒生长. 预测的冷却曲线与实验冷却曲线变化趋势相符; 最终凝固组织形貌和M 7C 3碳化物体积分数与实验相符; 剩余液相、奥氏体中C, Cr溶质浓度演变也与Gulliver-Scheil, Partial Equilibrium, Lever Rule模型预测结果相符.
      M 7C 3carbide’s amount, size, morphology and distribution in the microstructure contribute much to the wear resistance of high chromium cast irons. In the present paper, a two-dimensional microscopic cellular automaton model for the growth of the faceted M 7C 3carbide together with the austenitic dendrite grains in an Fe-4%C-17%Cr ternary alloy is developed to obtain the evolution of M 7C 3carbide grain morphology, the concentration redistribution and their interaction during the growth of M 7C 3carbide and austenite grains, and also the total influence on the final M 7C 3carbides’ size. The model includes the effect of latent heat release on the temperature drop. The grain growth velocity is determined by both the diffusion of C solute and the diffusion of Cr solute at the S/L interface. The equilibrium concentration in liquid cells is interpolated from the tablulated solidification path which is prescribed by Gulliver-Scheil approximation coupling with the thermodynamic equilibrium calculation. The morphology of the faceted M 7C 3carbide is maintained through setting its neighborhood relations and optimizing its shape factor at grain growth. The results show that the individual grain growth velocity for M 7C 3carbide and austenite increases with the increase of the supersaturation and Peclet number of solute C and Cr. The austenite precipitation and grain growth obviously speed up the growth velocity of M 7C 3carbide grains. While with the austenite grains gradually touching and enveloping the M 7C 3carbide grain, the growth velocities for both kinds of grains decrease. The rejection of solute C and Cr during austenite grain growth complements the absorption of solute C and Cr during M 7C 3carbide grain growth, thus promoting their growth. The predicted cooling curve fits with the evolution tendency of the experimental one. The predicted final solidification microstructure and M 7C 3carbide amount in volume fraction are in agreement with the experimental ones. Furthermore, both C solute concentration distribution and Cr solute concentration distribution in both residual liquid and austenite are consistent with the predictions by the Gulliver-Scheil, partial equilibrium and lever rule model.
          通信作者:张红伟,hongweizhang@epm.neu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 51574074, 51425401)、国家自然科学基金钢铁联合研究基金(批准号: U1460108, U1560207)和辽宁省教育厅基金 (批准号: L20150183)资助的课题.
          Corresponding author:Zhang Hong-Wei,hongweizhang@epm.neu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 51574074, 51425401), the National Natural Science Foundation of China and Shanghai Baosteel (Grant Nos. U1460108, U1560207), and the Natural Science Foundations of Liaoning Province, China (Grant No. L20150183).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

      • Parameters Symbol Unit Value Note
        Initial composition C $ {C_{{\text{C0}}}} $ % 4.00 文献[22]
        Initial composition Cr $ {C_{{\text{Cr0}}}} $ % 17.00 文献[22]
        Austenite nucleation temperature $ \mathop T\nolimits_{{\gamma }} $ 1266.00 GS model
        M7C3nucleation temperature $ \mathop T\nolimits_{\text{M}} $ 1304.00 GS model
        C partition coefficient at austenite/liquid interface ${k_{ { {{\rm p}, {\mathrm{\gamma }/\mathrm{L} } , {\rm C} } } } }$ 0.407 GS model
        Cr partition coefficient at austenite/liquid interface ${k_{ { {{\rm p}, {\mathrm{\gamma }/\mathrm{L} } , {\rm Cr} } } } }$ 0.576 GS model
        Liquidus slope of C at austenite/liquid interface ${m_{ { { {\mathrm{L}/\mathrm{\gamma } }, {\rm C} } } } }$ ℃/% –95.49 GS model
        Liquidus slope of Cr at austenite/liquid interface ${m_{ { { {\mathrm{L}/\mathrm{\gamma } }, {\rm Cr} } } } }$ ℃/% 6.14 GS model
        Liquidus slope of C at M7C3/liquid interface ${m_{ {{\rm L/M}, \text{C} } } }$ ℃/% 90.37 GS model
        Liquidus slope of Cr at M7C3/liquid interface ${m_{ {{\rm L/M},\text{Cr} } } }$ ℃/% 15.29 GS model
        Diffusion coefficient of C in austenite ${D_{ { \mathrm{\gamma }, {\rm C} } } }$ m2/s 2.57×10–10 GS model
        Diffusion coefficient of Cr in austenite ${D_{ { {\mathrm{\gamma } , \rm Cr} } } }$ m2/s 3.67×10–14 GS model
        Diffusion coefficient of C in liquid phase ${D_{ {\text{L,C} } } }$ m2/s 9.60×10–10 GS model
        Diffusion coefficient of Cr in liquid phase ${D_{ {\text{L,Cr} } } }$ m2/s 8.23×10–10 GS model
        Diffusion coefficient of C in M7C3 ${D_{ {\text{M,C} } } }$ m2/s 0.0
        Diffusion coefficient of Cr in M7C3 ${D_{ {\text{M,Cr} } } }$ m2/s 0.0
        Gibbs-Thomson coefficient at austenite/liquid interface ${\varGamma _{ {\gamma } } }$ $ {\text{m}} \cdot {\text{K}} $ 1.9×10–7 文献[37]
        Gibbs-Thomson coefficient at M7C3/liquid interface ${\varGamma _{\text{M} } }$ $ {\text{m}} \cdot {\text{K}} $ 6.213×10–7 文献[38]
        Latent heat of fusion for austenite $ \mathop L\nolimits_{{\gamma }} $ J/kg 1.86×105 GS model
        Latent heat of fusion for M7C3 $ \mathop L\nolimits_{\text{M}} $ J/kg 2.38×105 GS model
        Specific heat capacity $\mathop c\nolimits_{\rm p}$ J/(kg$ \cdot $℃) 839 GS model
        下载: 导出CSV

        Model Alloy composition M7C3precipitation temperature/℃ γ precipitation temperature/℃ CEM precipitation temperature or solidus /℃ Phase volume fraction at CEM precipitation
        temperature or solidus
        GS model Fe-4%C-17%Cr 1304 1266 1194(CEM) 29.91%(M7C3) 57.22%(γ)
        GS model Fe-4%C-17%Cr-1.5%Ti 1288 1271 1193(CEM) 26.38%(M7C3) 63.20%(γ)
        Fe-C phase diagram Fe-4%C-17%Cr 1305 1266 1239(solidus)
        Fe-C phase diagram Fe-4%C-17%Cr-1.5%Ti 1285 1271 1248(solidus)
        GS model Fe-3.23%C-23.8%Cr 1305 1297 1193(CEM) 28.18%(M7C3) 71.62%(γ)
        GS model Fe-3.23%C-23.8%Cr-4%Ti 1296 1324 1296(solidus) 17.80%(M7C3) 74.28%(γ)
        Fe-C phase diagram Fe-3.23%C-23.8%Cr 1305 1296 1292(solidus)
        Fe-C phase diagram Fe-3.23%C-23.8%Cr-4%Ti 1295 1328 1295(solidus)
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

      • [1] 张士杰, 王颖明, 王琦, 李晨宇, 李日.基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟. 必威体育下载 , 2021, 70(23): 238101.doi:10.7498/aps.70.20211292
        [2] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘.多路段元胞自动机交通流模型. 必威体育下载 , 2017, 66(19): 194501.doi:10.7498/aps.66.194501
        [3] 陈瑞, 许庆彦, 柳百成.基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 必威体育下载 , 2014, 63(18): 188102.doi:10.7498/aps.63.188102
        [4] 永贵, 黄海军, 许岩.菱形网格的行人疏散元胞自动机模型. 必威体育下载 , 2013, 62(1): 010506.doi:10.7498/aps.62.010506
        [5] 魏雷, 林鑫, 王猛, 黄卫东.基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型. 必威体育下载 , 2012, 61(9): 098104.doi:10.7498/aps.61.098104
        [6] 田昌海, 邓敏艺, 孔令江, 刘慕仁.螺旋波动力学性质的元胞自动机有向小世界网络研究. 必威体育下载 , 2011, 60(8): 080505.doi:10.7498/aps.60.080505
        [7] 梅超群, 黄海军, 唐铁桥.城市快速路系统的元胞自动机模型与分析. 必威体育下载 , 2009, 58(5): 3014-3021.doi:10.7498/aps.58.3014
        [8] 宋玉蓉, 蒋国平.基于一维元胞自动机的复杂网络恶意软件传播研究. 必威体育下载 , 2009, 58(9): 5911-5918.doi:10.7498/aps.58.5911
        [9] 岳昊, 邵春福, 姚智胜.基于元胞自动机的行人疏散流仿真研究. 必威体育下载 , 2009, 58(7): 4523-4530.doi:10.7498/aps.58.4523
        [10] 彭莉娟, 康瑞.考虑驾驶员特性的一维元胞自动机交通流模型. 必威体育下载 , 2009, 58(2): 830-835.doi:10.7498/aps.58.830
        [11] 李庆定, 董力耘, 戴世强.公交车停靠诱发交通瓶颈的元胞自动机模拟. 必威体育下载 , 2009, 58(11): 7584-7590.doi:10.7498/aps.58.7584
        [12] 张立升, 邓敏艺, 孔令江, 刘慕仁, 唐国宁.用元胞自动机模型研究二维激发介质中的非线性波. 必威体育下载 , 2009, 58(7): 4493-4499.doi:10.7498/aps.58.4493
        [13] 单博炜, 林鑫, 魏雷, 黄卫东.纯物质枝晶凝固的元胞自动机模型. 必威体育下载 , 2009, 58(2): 1132-1138.doi:10.7498/aps.58.1132
        [14] 梅超群, 黄海军, 唐铁桥.高速公路入匝控制的一个元胞自动机模型. 必威体育下载 , 2008, 57(8): 4786-4793.doi:10.7498/aps.57.4786
        [15] 岳 昊, 邵春福, 陈晓明, 郝合瑞.基于元胞自动机的对向行人交通流仿真研究. 必威体育下载 , 2008, 57(11): 6901-6908.doi:10.7498/aps.57.6901
        [16] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明.基于元胞自动机的无线传感网络整体行为研究. 必威体育下载 , 2008, 57(11): 6896-6900.doi:10.7498/aps.57.6896
        [17] 郭四玲, 韦艳芳, 薛 郁.元胞自动机交通流模型的相变特性研究. 必威体育下载 , 2006, 55(7): 3336-3342.doi:10.7498/aps.55.3336
        [18] 吴可非, 孔令江, 刘慕仁.双车道元胞自动机NS和WWH交通流混合模型的研究. 必威体育下载 , 2006, 55(12): 6275-6280.doi:10.7498/aps.55.6275
        [19] 花 伟, 林柏梁.考虑行车状态的一维元胞自动机交通流模型. 必威体育下载 , 2005, 54(6): 2595-2599.doi:10.7498/aps.54.2595
        [20] 牟勇飚, 钟诚文.基于安全驾驶的元胞自动机交通流模型. 必威体育下载 , 2005, 54(12): 5597-5601.doi:10.7498/aps.54.5597
      计量
      • 文章访问数:4134
      • PDF下载量:54
      • 被引次数:0
      出版历程
      • 收稿日期:2021-04-16
      • 修回日期:2021-06-15
      • 上网日期:2021-08-15
      • 刊出日期:2021-11-05

        返回文章
        返回
          Baidu
          map