\begin{document}$ {\mathrm{X}}^{2}\Sigma _{1/2} $\end{document}态和\begin{document}$ {\mathrm{A}}^{2}\Pi _{1/2} $\end{document}态之间具有高度对角化的弗兰克-康登因子矩阵. 随后, 采用有效哈密顿量的方法研究了基态\begin{document}$ {\mathrm{X}}^{2}\Sigma _{1/2} $\end{document}的超精细能级结构和\begin{document}$ {\mathrm{A}}^{2}\Pi _{1/2}\left(J=1/2, \mathrm{ }+\right)\leftarrow {\mathrm{X}}^{2}\Sigma _{1/2}\left(N=1, \mathrm{ }-\right) $\end{document}跃迁的超精细跃迁分支比, 并提出可同时覆盖超精细能级的边带调制方案. 最后, 为探究CaH分子磁光囚禁的相关性质, 计算了\begin{document}$ |X, \mathrm{ }N=1, -\rangle $\end{document}态的塞曼效应和 J 混合下的朗德 g 因子. 以上工作不仅证明了激光冷却和磁光囚禁CaH分子的可行性, 而且对天体物理学中的光谱分析、超冷分子碰撞以及探索基本对称性破缺等基础物理学的相关研究也具有一定的参考意义."> 基于<inline-formula><tex-math id="M1">\begin{document}${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M1.png"/></alternatives></inline-formula>跃迁的CaH分子激光冷却光谱理论研究 - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

基于 ${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$ 跃迁的CaH分子激光冷却光谱理论研究

尹俊豪, 杨涛, 印建平

Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling

Yin Jun-Hao, Yang Tao, Yin Jian-Ping
PDF
HTML
导出引用
  • 冷分子是当下物理学的前沿领域和热点研究方向之一, 早在2004年就有科学家提出将CaH分子作为激光冷却与磁光囚禁的候选分子. 本文首先用三种方法(莫尔斯势法、闭合近似法和RKR反演法)计算CaH分子的弗兰克-康登因子, 证实了CaH的 $ {\mathrm{X}}^{2}\Sigma _{1/2} $ 态和 $ {\mathrm{A}}^{2}\Pi _{1/2} $ 态之间具有高度对角化的弗兰克-康登因子矩阵. 随后, 采用有效哈密顿量的方法研究了基态 $ {\mathrm{X}}^{2}\Sigma _{1/2} $ 的超精细能级结构和 $ {\mathrm{A}}^{2}\Pi _{1/2}\left(J=1/2, \mathrm{ }+\right)\leftarrow {\mathrm{X}}^{2}\Sigma _{1/2}\left(N=1, \mathrm{ }-\right) $ 跃迁的超精细跃迁分支比, 并提出可同时覆盖超精细能级的边带调制方案. 最后, 为探究CaH分子磁光囚禁的相关性质, 计算了 $ |X, \mathrm{ }N=1, -\rangle $ 态的塞曼效应和 J混合下的朗德 g因子. 以上工作不仅证明了激光冷却和磁光囚禁CaH分子的可行性, 而且对天体物理学中的光谱分析、超冷分子碰撞以及探索基本对称性破缺等基础物理学的相关研究也具有一定的参考意义.
    Laser cooling and trapping of neutral molecules has made substantial progress in the past few years. On one hand, molecules have more complex energy level structures than atoms, thus bringing great challenges to direct laser cooling and trapping; on the other hand, cold molecules show great advantages in cold molecular collisions and cold chemistry, as well as the applications in many-body interactions and fundamental physics such as searching for fundamental symmetry violations. In recent years, polar diatomic molecules such as SrF, YO, and CaF have been demonstrated experimentally in direct laser cooling techniques and magneto-optic traps (MOTs), all of which require a comprehensive understanding of their molecular internal level structures. Other suitable candidates have also been proposed, such as YbF, MgF, BaF, HgF or even SrOH and YbOH, some of which are already found to play important roles in searching for variations of fundamental constants and the measurement of the electron’s Electric Dipole Moment ( eEDM). As early as 2004, the CaH molecule was selected as a good candidate for laser cooling and magneto-optical trapping. In this article, we first theoretically investigate the Franck−Condon factors of CaH in the ${{\rm{A}}}^{2}\Pi _{1/2}\leftarrow {{\rm{X}}}^{2}\Sigma _{1/2}$ transition by the Morse potential method, the closed-form approximation method and the Rydberg-Klein-Rees method separately, and prove that Franck−Condon factor matrix between $ {\mathrm{X}}^{2}\Sigma _{1/2} $ state and $ {\mathrm{A}}^{2}\Pi _{1/2} $ state is highly diagonalized, and indicate that sum of f 00, f 01and f 02for each molecule is greater than 0.9999 and almost 1 × 10 4photons can be scattered to slow the molecules with merely three lasers. The molecular hyperfine structures of $ {X}^{2}\Sigma _{1/2} $ , as well as the transitions and associated hyperfine branching ratios in the ${{\rm{A}}}^{2}\Pi _{1/2}\left(J=1/2, \mathrm{ }+\right)\leftarrow {{\rm{X}}}^{2}\Sigma _{1/2}\left(N=1, \mathrm{ }-\right)$ transition of CaH, are examined via the effective Hamiltonian approach. According to these results, in order to fully cover the hyperfine manifold originating from $ |X, \mathrm{ }N=1, -\rangle $ , we propose the sideband modulation scheme that at least two electro-optic modulators (EOMs) should be required for CaH when detuning within 3 Γof the respective hyperfine transition. In the end, we analyze the Zeeman structures and magnetic gfactors with and without Jmixing of the $ |X, \mathrm{ }N=1, -\rangle $ state to undercover more information about the magneto-optical trapping. Our work here not only demonstrates the feasibility of laser cooling and trapping of CaH, but also illuminates the studies related to spectral analysis in astrophysics, ultracold molecular collisions and fundamental physics such as exploring the fundamental symmetry violations.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

    • $ {T}_{\mathrm{e}} $/cm–1 $ {\omega }_{\mathrm{e}} $/cm–1 $ {\omega }_{\mathrm{e}}{\chi }_{\mathrm{e}} $/cm–1 $ {r}_{\mathrm{e}} $/Å τ/ns
      $ {\mathrm{X}}^{2}\Sigma _{1/2} $ 0 1298.34a 19.1a 2.0025b
      $ {\mathrm{A}}^{2}\Pi _{1/2} $ 14413.0a 1333a 20a 1.9740b 33.2c
      aRef. [55];bRef. [56];cRef. [49].
      下载: 导出CSV

      方法 f00 f01 f02 f11 f13
      闭合近似 0.9846 0.0152 0.0001 0.9545 0.00035
      莫尔斯势 0.9850 0.0146 0.0004 0.9560 0.0014
      RKR反演 0.99542 0.00454 0.00004 0.98631 0.00012
      Ref. [50] 0.961 0.038 0.002 0.885 0.005
      下载: 导出CSV

      跃迁波长/nm 本文 实验值[55] Ref. [50]
      λ00 692.996 (4) 693.0 675.4
      λ10 759.303 (8) 759.3 738.0
      λ21 755.229 (20) 732.0
      下载: 导出CSV

      参数 Ref. [59]
      $ {B}_{\upsilon } $/MHz 126772.935
      $ {D}_{\upsilon } $/MHz 5.546
      $ {\gamma_\upsilon } $/MHz 1305.755
      $ {b}_{\upsilon } $/MHz 155.785
      $ {c}_{\upsilon } $/MHz 4.74
      下载: 导出CSV

      $ N\to N' $ $J \to J'$ $F \to F' $ νcal/MHz νexpa/MHz νcalνexp/MHz
      0$ \to $1 1/2$ \to $1/2 1$ \to $1 252163.0907 252163.082 0.0087
      1$ \to $0 252216.3510 252216.347 0.004
      0$ \to $1 252320.4557 252320.467 –0.0113
      1/2$ \to $3/2 1$ \to $1 254074.8288 254074.834 –0.0052
      1$ \to $2 254176.4055 254176.415 –0.0095
      0$ \to $1 254232.1938 254232.179 0.0148
      aRef. [59]
      下载: 导出CSV

      理想的组分 考虑J混合后真实的组分
      $ \left|J=3/2, \right.F=2\rangle $ $ \left|J=3/2, \right.F=2\rangle $
      $ \left|J=3/2, \right.F=1\rangle $ $0.999238\left|J=3/2, \right.F=1\rangle +\\0.039028\left|J=1/2, \right.F=1\rangle$
      $ \left|J=1/2, \right.F=1\rangle $ $-0.039028\left|J=3/2, \right.F=1\rangle +\\0.999238\left|J=1/2, \right.F=1\rangle$
      $ \left|J=1/2, \right.F=0\rangle $ $ \left|J=1/2, \right.F=0\rangle $
      下载: 导出CSV

      J F MF F'= 0 F'= 1
      $M'_{\rm F} = 0$ $M'_{\rm F} = -1$ $M'_{\rm F} = 0$ $M'_{\rm F} = 1$
      3/2 –2 0.000000 0.166667 0.000000 0.000000
      –1 0.000000 0.083333 0.083333 0.000000
      0 0.000000 0.027778 0.111111 0.027778
      1 0.000000 0.000000 0.083333 0.083333
      2 0.000000 0.000000 0.000000 0.166667
      3/2 –1 0.099024 0.034202 0.034202 0.000000
      0 0.099024 0.034202 0.000000 0.034202
      1 0.099024 0.000000 0.034202 0.034202
      1/2 –1 0.234309 0.215798 0.215798 0.000000
      0 0.234309 0.215798 0.000000 0.215798
      1 0.234309 0.000000 0.215798 0.215798
      1/2 0 0.000000 0.222222 0.222222 0.222222
      下载: 导出CSV

      g(没有J混合) g(有J混合)
      $ \left|J=3/2, \right.F=2\rangle $ 0.50 0.50
      $ \left|J=3/2, \right.F=1\rangle $ 0.83 0.865
      $ \left|J=1/2, \right.F=1\rangle $ –0.33 –0.365
      $ \left|J=1/2, \right.F=0\rangle $ 0.00 0.000
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

    • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震.基于二维磁光阱的增强型199Hg冷原子团制备. 必威体育下载 , 2024, 73(1): 013701.doi:10.7498/aps.73.20231243
      [2] 朱宇豪, 李瑞.基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究. 必威体育下载 , 2024, 73(5): 053101.doi:10.7498/aps.73.20231347
      [3] 冯卓, 索兵兵, 韩慧仙, 李安阳.CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析. 必威体育下载 , 2024, 73(2): 023301.doi:10.7498/aps.73.20230742
      [4] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰.AsH+离子的电子结构和跃迁性质. 必威体育下载 , 2022, 71(21): 213101.doi:10.7498/aps.71.20221104
      [5] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰.AsH+离子的电子结构和跃迁性质. 必威体育下载 , 2022, 0(0): .doi:10.7498/aps.7120221104
      [6] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平.基于多能级速率方程的CaH分子三维磁光囚禁模型. 必威体育下载 , 2022, 71(16): 163701.doi:10.7498/aps.71.20220304
      [7] 万明杰, 李松, 金成国, 罗华锋.激光冷却SH阴离子的理论研究. 必威体育下载 , 2019, 68(6): 063103.doi:10.7498/aps.68.20182039
      [8] 万明杰, 罗华锋, 袁娣, 李松.激光冷却KCl阴离子的理论研究. 必威体育下载 , 2019, 68(17): 173102.doi:10.7498/aps.68.20190869
      [9] 陈涛, 颜波.极性分子的激光冷却及囚禁技术. 必威体育下载 , 2019, 68(4): 043701.doi:10.7498/aps.68.20181655
      [10] 邢伟, 孙金锋, 施德恒, 朱遵略.AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 必威体育下载 , 2018, 67(19): 193101.doi:10.7498/aps.67.20180926
      [11] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平.基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究. 必威体育下载 , 2018, 67(20): 203702.doi:10.7498/aps.67.20181348
      [12] 许雪艳, 侯顺永, 印建平.一种可控的Ioffe型冷分子表面微电阱. 必威体育下载 , 2018, 67(11): 113701.doi:10.7498/aps.67.20180206
      [13] 张云光, 张华, 窦戈, 徐建刚.激光冷却OH分子的理论研究. 必威体育下载 , 2017, 66(23): 233101.doi:10.7498/aps.66.233101
      [14] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲.6Li32S双原子分子的光谱和辐射跃迁理论研究. 必威体育下载 , 2016, 65(3): 033101.doi:10.7498/aps.65.033101
      [15] 刘建平, 侯顺永, 魏斌, 印建平.亚声速NH3分子束静电Stark减速的理论研究. 必威体育下载 , 2015, 64(17): 173701.doi:10.7498/aps.64.173701
      [16] 许忻平, 张海潮, 王育竹.一种实现冷原子束聚集的微磁透镜新方案. 必威体育下载 , 2012, 61(22): 223701.doi:10.7498/aps.61.223701
      [17] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明.利用激光冷却原子束测量氦原子精密光谱. 必威体育下载 , 2012, 61(17): 170601.doi:10.7498/aps.61.170601
      [18] 张宝武, 张萍萍, 马艳, 李同保.铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 必威体育下载 , 2011, 60(11): 113701.doi:10.7498/aps.60.113701
      [19] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹.紫外光诱导原子脱附技术在单腔磁阱装载中的应用. 必威体育下载 , 2007, 56(6): 3205-3211.doi:10.7498/aps.56.3205
      [20] 谢 旻, 凌 琳, 杨国建.非简并Λ型三能级原子的速度选择相干布居俘获. 必威体育下载 , 2005, 54(8): 3616-3621.doi:10.7498/aps.54.3616
    计量
    • 文章访问数:3652
    • PDF下载量:116
    • 被引次数:0
    出版历程
    • 收稿日期:2021-03-18
    • 修回日期:2021-04-12
    • 上网日期:2021-06-07
    • 刊出日期:2021-08-20

      返回文章
      返回
        Baidu
        map