搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    高峰, 张红, 张常哲, 赵文丽, 孟庆田

    Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion

    Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian
    PDF
    HTML
    导出引用
    • 基于Molpro 2012程序包, 应用包含Davidson修正的多参考组态相互作用方法, 使用AV XZ和AV XdZ ( X= T, Q, 5, 6)基组进行单点能从头算, 然后采用Aguado-Paniagua函数进行拟合, 得到了SiH +(X 1Σ +)离子在不同基组、不同方法和是否考虑自旋-轨道耦合(SOC)情况下的解析势能函数(APEFs). 以APEFs为基础, 计算了SiH +(X 1Σ +)离子的解离能 D e, 平衡键长 R e, 振动频率 ω e, 光谱常数 B e, α eω e χ e, 同时讨论了SOC对该体系的影响. 本文的计算结果与其他理论计算符合得较好, 与实验数值也基本吻合. 基于SOC-AV6dZ方法下的APEF, 通过求解径向薛定谔方程, 给出了SiH +(X 1Σ +)离子的前23个振动能级( j= 0), 并详细列出了每1个振动能级及其相应的经典拐点, 每个振动态的转动常数和6个离心畸变常数, 且提供了振动能级图. 该工作对于实验和后续的理论工作有参考和指导作用.
      The analytical potential energy function (APEF) of SiH +(X 1Σ +) is fitted by Aguado-Paniagua function with 112 ab initioenergy points, which are calculated by Molpro 2012 Package with the multi-reference configuration interaction including the Davidson correction method using AV XZ and AV XdZ ( X= Q, 5, 6) basis sets. Moreover, the calculated ab initioenergy points are subsequently extrapolated to complete basis set (CBS) limit to avoid the basis set superposition error. All the fitting parameters of APEFs for AV6Z, CBS(Q, 5), AV6dZ, CBS(Qd, 5d), SA-AV6dZ and SOC-AV6dZ methods are gathered. The potential energy curves (PEC) and the corresponding ab initiopoints are also shown. As can be seen, the PECs show excellent agreement with the ab initiopoints and a smooth behavior both in short range and long range, which ensures the high quality of fitting process for the current APEFs. Based on these APEFs of different basis sets and methods including AVQZ, AV5Z, AV6Z, CBS(Q, 5), AVQdZ, AV5dZ, AV6dZ and CBS(Qd, 5d), the spectral constants D e, R e, ω e, B e, α eand ω e χ eare obtained. In addition, the effects of spin-orbit coupling interaction (SOC) on the system are also investigated. By comparing the spectral constants of SA-AV6dZ with the ones of SOC-AV6dZ, it is found that the effect of SOC on SiH +(X 1Σ +) is small and can be ignored. We also compare the spectral constants in this work with the experimental values and other theoretical results. The results of this work accord well with the corresponding experimental and other theoretical results. It is worth noting that the deviation of dissociation energy between the theoretical calculations and experimental values is relatively large. Based on this conclusion, we suggest that the spectral constants including the dissociation energy for SiH +(X 1Σ +) should be remeasured. Based on the APEF of SOC-AV6dZ which should be more accurate than others in theory, the top 23 vibrational states ( j= 0) of SiH +(X 1Σ +) are calculated first by solving the radial Schrödinger equation. All the vibrational energy levels, classical turning points, rotation constants and six centrifugal distortion constants are also provided. The results of this work can provide significant references for the experimental and other theoretical work.
          Corresponding author:Zhao Wen-Li,zwl@sdau.edu.cn; Meng Qing-Tian,qtmeng@sdnu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11674198, 11804195)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • AV6Z CBS(Q, 5) AV6dZ CBS(Qd, 5d) SA-AV6dZ SOC-AV6dZ
        a0 0.50876826×101 0.50552062×101 0.50858283×101 0.50691706×101 0.50773275×101 0.50772768×101
        a1 –0.13804619×100 –0.14563907×100 –0.13801387×100 –0.14215220×100 –0.13720269×100 –0.15322183×100
        a2 –0.13563746×101 –0.14531223×101 –0.13570613×101 –0.14215828×101 –0.16375066×101 0.30937784×100
        a3 –0.51802913×102 –0.49687570×102 –0.51738027×102 –0.50317640×102 –0.42586263×102 –0.92938545×102
        a4 0.62749955×103 0.59645776×103 0.62624067×103 0.60422890×103 0.45856480×103 0.11152320×104
        a5 –0.48068238×104 –0.45486708×104 –0.47942732×104 –0.45972031×104 –0.30344319×104 –0.81653091×104
        a6 0.26148147×105 0.24858810×105 0.26073093×105 0.24994077×105 0.14706913×105 0.40426343×105
        a7 –0.98935973×105 –0.94946694×105 –0.98651660×105 –0.94886015×105 –0.51962969×105 –0.13681997×106
        a8 0.24960293×106 0.24200403×106 0.24891691×106 0.24047472×106 0.12676883×106 0.31028426×106
        a9 –0.39722347×106 –0.38879401×106 –0.39620641×106 –0.38442238×106 –0.19927330×106 –0.44979467×106
        a10 0.35937312×106 0.35468541×106 0.35853489×106 0.34921672×106 0.18029764×106 0.37617755×106
        a11 –0.14069370×106 –0.13986829×106 –0.14040272×106 –0.13721966×106 –0.71149416×106 –0.13802294×106
        β1 0.6890 0.6800 0.6890 0.6840 0.6870 0.6870
        β2 0.7470 0.7470 0.7470 0.7470 0.7470 0.7470
        Ermsd/
        (kcal·mol–1)
        1.60176420×10–2 1.61755859×10–2 1.60042370×10–2 1.627559848×10–2 9.45767662×10–3 1.11170443×10–2
        下载: 导出CSV

        基组 De(Eh) Re(a0) ωe/cm–1 βe/cm–1 αe/cm–1 ωeχe/cm–1
        AVQZ 0.124640 2.851925 2153.245 7.607440 0.219327 42.373
        AV5Z 0.125388 2.848589 2155.792 7.625272 0.218960 42.220
        AV6Z 0.125584 2.848001 2156.686 7.628410 0.218833 42.189
        CBS(Q, 5) 0.125856 2.847053 2157.189 7.633502 0.218622 42.117
        AVQdZ 0.125067 2.848877 2156.187 7.623729 0.219427 42.343
        AV5dZ 0.125461 2.848067 2156.737 7.628067 0.219011 42.232
        AV6dZ 0.125622 2.847728 2157.046 7.629881 0.218849 42.190
        CBS(Qd, 5d) 0.125801 2.847782 2156.602 7.629593 0.218534 42.112
        SA-AV6dZ 0.127264 2.848531 2163.448 7.625581 0.216725 41.893
        SOC-AV6dZ 0.126533 2.848382 2164.033 7.626378 0.217885 42.158
        Expe[12,34] 0.123203 2.842338 2157.17 7.6603 0.2096 34.24
        Theory[16] 0.118665 2.834590 2155.4 7.6786 0.2082 38.8
        Theory[18] 0.123982 2.844039 2172.0
        Theory[21] 0.125317 2.834590 2177.9 7.6984 36.7
        Theory[23] 0.124980 2.842149 2154.3 7.6609 0.2032 35.0
        下载: 导出CSV

        v G(v)/ cm–1 Rmin(a0) Rmax(a0) Bv/ cm–1
        0 1074.467 2.62981 3.11141 7.530487
        1 3171.224 2.49347 3.33862 7.336827
        2 5200.543 2.40984 3.51594 7.142529
        3 7162.231 2.34756 3.67498 6.947281
        4 9055.742 2.29761 3.82512 6.750433
        5 10880.124 2.25595 3.97091 6.551101
        6 12634.005 2.22031 3.91505 6.348250
        7 14315.600 2.18934 4.26009 6.140735
        8 15922.726 2.16213 4.40742 5.927312
        9 17452.802 2.13803 4.55893 5.706603
        10 18902.835 2.11661 4.71650 5.477032
        11 20269.364 2.09752 4.88227 5.236702
        12 21548.363 2.08051 5.05888 4.983201
        13 22735.066 2.06540 5.24986 4.713296
        14 23823.694 2.05206 5.46016 4.422419
        15 24807.010 2.04041 5.69731 4.103776
        16 25675.599 2.03041 5.97379 3.746622
        17 26416.625 2.02208 6.31278 3.332604
        18 27011.579 2.01553 6.76545 2.826988
        19 27432.546 2.01096 7.48310 2.158867
        20 27650.956 2.00861 9.05975 1.323582
        21 27734.462 2.00771 11.47553 0.838944
        22 27769.256 2.00734 16.60576 0.360244
        下载: 导出CSV

        v Dv(× 10–4) Hv(× 10–8) Lv Mv Nv Ov
        0 –3.7712102 1.4824556 –9.1045 × 10–13 4.1069 × 10–17 –2.4011 × 10–21 6.9631 × 10–26
        1 –3.7362090 1.4243863 –8.8032 × 10–13 3.5297 × 10–17 –4.1863 × 10–21 1.8363 × 10–25
        2 –3.7039865 1.3618539 –8.9866 × 10–13 2.9262 × 10–17 –5.1444 × 10–21 1.9171 × 10–25
        3 –3.6778687 1.2884893 –9.4914 × 10–13 2.3397 × 10–17 –5.8593 × 10–21 9.6796 × 10–26
        4 –3.6608093 1.2011917 –1.0216 × 10–12 1.6648 × 10–17 –6.8904 × 10–21 –1.1678 × 10–25
        5 –3.6553038 1.0982022 –1.1140 × 10–12 6.8522 × 10–18 –8.7371 × 10–21 –4.8697 × 10–25
        6 –3.6635199 0.9774540 –1.2320 × 10–12 –9.1302 × 10–18 –1.2003 × 10–20 –1.1229 × 10–24
        7 –3.6875661 0.8351772 –1.3901 × 10–12 –3.5900 × 10–17 –1.7702 × 10–20 –2.2781 × 10–24
        8 –3.7298613 0.6645057 –1.6143 × 10–12 –8.0925 × 10–17 –2.7799 × 10–20 –4.5064 × 10–24
        9 –3.7936180 0.4536483 –1.9481 × 10–12 –1.5748 × 10–16 –4.6321 × 10–20 –9.0505 × 10–24
        10 –3.8835055 1.8293995 –2.4663 × 10–12 –2.9088 × 10–16 –8.1928 × 10–20 –1.8869 × 10–23
        11 –4.0066389 –0.1804552 –3.3026 × 10–12 –5.3251 × 10–16 –1.5445 × 10–19 –4.1577 × 10–23
        12 –4.1741837 –0.6927552 –4.7113 × 10–12 –9.9426 × 10–16 –3.1311 × 10–19 –9.8710 × 10–23
        13 –4.4041727 –1.4546951 –7.2135 × 10–12 –1.9417 × 10–15 –6.9300 × 10–19 –2.5871 × 10–22
        14 –4.7268845 –2.6591579 –1.1978 × 10–11 –4.0783 × 10–15 –1.7160 × 10–18 –7.7417 × 10–22
        15 –5.1961278 –4.7106022 –2.1959 × 10–11 –9.5527 × 10–15 –4.9431 × 10–18 –2.7809 × 10–21
        16 –5.9157772 –8.5688303 –4.5904 × 10–11 –2.6336 × 10–14 –1.7665 × 10–17 –1.2991 × 10–20
        17 –7.1117968 –16.938203 –1.1615 × 10–10 –9.3420 × 10–14 –8.7454 × 10–17 –9.0301 × 10–20
        18 –9.3643712 –39.467832 –3.9578 × 10–10 –4.9264 × 10–13 –7.1396 × 10–16 –1.1444 × 10–18
        19 –14.323856 –114.68916 –1.7949 × 10–9 –3.4005 × 10–12 –7.1696 × 10–15 –1.6154 × 10–17
        20 –18.399913 –47.324191 1.5501 × 10–9 –7.5768 × 10–13 –3.7548 × 10–14 –1.9274 × 10–17
        21 –14.637253 –291.40012 –2.0665 × 10–8 –1.4452 × 10–10 –1.3084 × 10–12 –1.3806 × 10–14
        22 –57.213156 –20756.133 –1.6655 × 10–5 –1.7512 × 10–6 –2.1241 × 10–7 –2.8187 × 10–8
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • [1] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭.AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 必威体育下载 , 2023, 72(16): 163101.doi:10.7498/aps.72.20230615
        [2] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋.BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 必威体育下载 , 2022, 71(10): 103101.doi:10.7498/aps.71.20220038
        [3] 罗华锋, 万明杰, 黄多辉.BH+离子基态及激发态的势能曲线和跃迁性质的研究. 必威体育下载 , 2018, 67(4): 043101.doi:10.7498/aps.67.20172409
        [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花.GeS分子基态和低激发态的势能曲线与光谱性质. 必威体育下载 , 2016, 65(6): 063102.doi:10.7498/aps.65.063102
        [5] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 必威体育下载 , 2014, 63(12): 123102.doi:10.7498/aps.63.123102
        [6] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超.SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 必威体育下载 , 2014, 63(8): 083102.doi:10.7498/aps.63.083102
        [7] 陈恒杰.LiAl分子基态、激发态势能曲线和振动能级. 必威体育下载 , 2013, 62(8): 083301.doi:10.7498/aps.62.083301
        [8] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳.多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 必威体育下载 , 2013, 62(23): 233302.doi:10.7498/aps.62.233302
        [9] 朱遵略, 郎建华, 乔浩.SF分子基态及低激发态势能函数与光谱常数的研究. 必威体育下载 , 2013, 62(16): 163103.doi:10.7498/aps.62.163103
        [10] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳.BP+基态和激发态的势能曲线和光谱性质的研究. 必威体育下载 , 2013, 62(19): 193301.doi:10.7498/aps.62.193301
        [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 必威体育下载 , 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [12] 李松, 韩立波, 陈善俊, 段传喜.SN-分子离子的势能函数和光谱常数研究. 必威体育下载 , 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [13] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.PS自由基X2Π态的势能曲线和光谱性质. 必威体育下载 , 2013, 62(20): 203104.doi:10.7498/aps.62.203104
        [14] 施德恒, 牛相宏, 孙金锋, 朱遵略.BF自由基X1+和a3态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(9): 093105.doi:10.7498/aps.61.093105
        [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋.用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 必威体育下载 , 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [16] 王杰敏, 孙金锋.采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 必威体育下载 , 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [17] 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 必威体育下载 , 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [18] 王新强, 杨传路, 苏涛, 王美山.BH分子基态和激发态解析势能函数和光谱性质. 必威体育下载 , 2009, 58(10): 6873-6878.doi:10.7498/aps.58.6873
        [19] 高 峰, 杨传路, 张晓燕.多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 必威体育下载 , 2007, 56(5): 2547-2552.doi:10.7498/aps.56.2547
        [20] 钱 琪, 杨传路, 高 峰, 张晓燕.多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 必威体育下载 , 2007, 56(8): 4420-4427.doi:10.7498/aps.56.4420
      计量
      • 文章访问数:4920
      • PDF下载量:86
      • 被引次数:0
      出版历程
      • 收稿日期:2021-03-08
      • 修回日期:2021-03-24
      • 上网日期:2021-06-07
      • 刊出日期:2021-08-05

        返回文章
        返回
          Baidu
          map