搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

万建杰, 赵鑫婷, 李冀光, 董晨钟

Theoretical investigation on Stark-induced transition probabilities of hydrogen-like ions

Wan Jian-Jie, Zhao Xin-Ting, Li Ji-Guang, Dong Chen-Zhong
PDF
HTML
导出引用
  • 基于微扰理论研究了静电场Stark效应诱导的类氢离子2s 1/2-1s 1/2跃迁, 给出了 Z= 1—92类氢离子的Stark混合系数和2s 1/2-1s 1/2跃迁几率, 讨论了Stark效应诱导的类氢离子2s 1/2-1s 1/2跃迁几率随原子序数的变化规律以及相对论效应对Stark混合系数和诱导跃迁几率的影响. 结果表明, 给定电场强度时, 类氢离子的Stark诱导跃迁几率随着原子序数 Z的增大单调减小. 另外, 相对论效应使得类氢离子的Stark诱导跃迁几率减小, 甚至在 Z= 92时会减小到非相对论近似的55%.
    Based on the nondegenerate perturbation theory, the Stark-induced transitions are studied for hydrogen-like isoelectronic sequences ( Z= 1–92). The Stark-induced mixing coefficients and transition probabilities between the 2s 1/2-1s 1/2levels of hydrogen-like ions are reported. The trend of Stark-induced transition probabilities varying with atomic number Zbetween 2s 1/2-1s 1/2levels of hydrogen-like ions and the relativistic effect on the Stark-induced mixing coefficients and transition probabilities are discussed. The scaling relations of the nonrelativistic and relativistic Stark-induced transition probabilities with atomic number Zare obtained. The results show that the Stark-induced transition probabilities of hydrogen-like ions decrease monotonically along the isoelectronic sequence with the increase of atomic number Z. In addition, the relativistic effect reduces the Stark-induced transition probabilities of hydrogen-like ions, for example, by about 55% at Z= 92.
        通信作者:万建杰,wanjj@nwnu.edu.cn; 李冀光,li_jiguang@iapcm.ac.cn;
      • 基金项目:国家自然科学基金(批准号: 11874090, 12075193)、甘肃省自然科学基金(批准号: 20JR10RA084)、甘肃省基础研究创新群体项目(批准号: 20JR5RA541)、甘肃省自然科学基金青年科技计划(批准号: 1506RJYA131)、西北师范大学青年教师科研能力提升计划(批准号: NWNU-LKQN-10-7)和西北师范大学物理与电子工程物理学科科研创新团队项目资助的课题
        Corresponding author:Wan Jian-Jie,wanjj@nwnu.edu.cn; Li Ji-Guang,li_jiguang@iapcm.ac.cn;
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 12075193), the Natural Science Foundation of Gansu Province, China (Grant Nos. 20JR10RA084, 20JR5RA541, 1506RJYA131), the Foundation of Northwest Normal University, China (Grant No. NWNU-LKQN-10-7), and the Scientific Research Foundation of Physics of College of Physics and Electronic Engineering, Northwest Normal University, China
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

    • Z Energy difference/cm–1 Matrix element
      ΔE1[19] ΔE2 $\langle $2p1/2|r||2s1/2$\rangle $ $\langle $2p3/2||r||2s1/2$\rangle $ $\langle $2p||r||2s $\rangle $ $\langle $1s1/2||r||2p1/2$\rangle $ $\langle $1s1/2||r||2p3/2$\rangle $ $\langle $1s||r||2p$\rangle $
      1 3.52868[-2] –3.65221[-1] –5.19604 –5.19611 –5.19615 1.29024 1.29024 1.29027
      2 4.68400[-1] –5.84353[0] –2.59785 –2.59798 –2.59808 0.64509 0.64508 0.64513
      3 2.09220[0] –2.95829[1] –1.73170 –1.73191 –1.73205 0.43002 0.43001 0.43009
      4 5.99720[0] –9.34965[1] –1.29858 –1.29885 –1.29904 0.32247 0.32247 0.32257
      6 2.60840[1] –4.73326[2] –0.86533 –0.86575 –0.86603 0.21490 0.21489 0.21504
      8 7.32500[1] –1.49594[3] –0.64860 –0.64915 –0.64952 0.16109 0.16108 0.16128
      10 1.62100[2] –3.65221[3] –0.51846 –0.51915 –0.51962 0.12879 0.12878 0.12903
      12 3.08800[2] –7.57322[3] –0.43163 –0.43246 –0.43301 0.10724 0.10722 0.10752
      14 5.30600[2] –1.40303[4] –0.36954 –0.37051 –0.37115 0.09183 0.09181 0.09216
      16 8.46400[2] –2.39351[4] –0.32291 –0.32402 –0.32476 0.08026 0.08024 0.08064
      18 1.27570[3] –3.83394[4] –0.28659 –0.28784 –0.28868 0.07125 0.07123 0.07168
      20 1.83800[3] –5.84353[4] –0.25749 –0.25888 –0.25981 0.06403 0.06401 0.06451
      24 3.45000[3] –1.21171[5] –0.21372 –0.21539 –0.21651 0.05318 0.05315 0.05376
      28 5.86400[3] –2.24485[5] –0.18232 –0.18426 –0.18558 0.04540 0.04537 0.04608
      32 9.28800[3] –3.82962[5] –0.15865 –0.16087 –0.16238 0.03954 0.03950 0.04032
      36 1.39300[4] –6.13430[5] –0.14013 –0.14263 –0.14434 0.03496 0.03492 0.03584
      40 2.00100[4] –9.34965[5] –0.12522 –0.12799 –0.12990 0.03127 0.03123 0.03226
      44 2.78800[4] –1.36888[6] –0.11292 –0.11597 –0.11809 0.02823 0.02819 0.02932
      48 3.78200[4] –1.93874[6] –0.10259 –0.10592 –0.10825 0.02568 0.02563 0.02688
      52 5.03100[4] –2.67035[6] –0.09376 –0.09737 –0.09993 0.02351 0.02345 0.02481
      56 6.56100[4] –3.59176[6] –0.08612 –0.09001 –0.09279 0.02162 0.02156 0.02304
      60 8.45400[4] –4.73326[6] –0.07942 –0.08359 –0.08660 0.01997 0.01991 0.02150
      64 1.08200[5] –6.12739[6] –0.07348 –0.07793 –0.08119 0.01850 0.01844 0.02016
      68 1.37000[5] –7.80892[6] –0.06817 –0.07290 –0.07641 0.01720 0.01713 0.01897
      72 1.73900[5] –9.81489[6] –0.06338 –0.06839 –0.07217 0.01601 0.01595 0.01792
      76 2.20000[5] –1.21846[7] –0.05902 –0.06432 –0.06837 0.01494 0.01487 0.01698
      80 2.79500[5] –1.49594[7] –0.05503 –0.06060 –0.06495 0.01395 0.01388 0.01613
      84 3.56700[5] –1.81833[7] –0.05135 –0.05720 –0.06186 0.01304 0.01297 0.01536
      88 4.62700[5] –2.19021[7] –0.04793 –0.05406 –0.05905 0.01219 0.01212 0.01466
      92 6.07300[5] –2.61642[7] –0.04473 –0.05114 –0.05648 0.01139 0.01133 0.01402
      下载: 导出CSV

      Z λ/nm Transition probability/s–1
      Model I Model II
      ASIT(NR) ASIT(R) ASIT(NR) ASIT(R)
      1 121.50287 2.7510[–1] 2.7508[–1] 2.8023[–1] 2.8022[–1]
      2 30.37572 6.2450[–3] 6.2439[–3] 6.3253[–3] 6.3242[–3]
      3 13.50032 7.0428[–4] 7.0399[–4] 7.1133[–4] 7.1104[–4]
      4 7.59393 1.5238[–4] 1.5227[–4] 1.5364[–4] 1.5353[–4]
      6 3.37508 1.8124[–5] 1.8095[–5] 1.8234[–5] 1.8205[–5]
      8 1.89848 4.0858[–6] 4.0740[–6] 4.1054[–6] 4.0936[–6]
      10 1.21503 1.3036[–6] 1.2978[–6] 1.3087[–6] 1.3029[–6]
      12 0.84377 5.1727[–7] 5.1392[–7] 5.1899[–7] 5.1564[–7]
      14 0.61991 2.3847[–7] 2.3637[–7] 2.3915[–7] 2.3705[–7]
      16 0.47462 1.2240[–7] 1.2099[–7] 1.2271[–7] 1.2130[–7]
      18 0.37501 6.8196[–8] 6.7198[–8] 6.8347[–8] 6.7348[–8]
      20 0.30376 4.0558[–8] 3.9825[–8] 4.0638[–8] 3.9904[–8]
      24 0.21094 1.6577[–8] 1.6143[–8] 1.6603[–8] 1.6169[–8]
      28 0.15498 7.8098[–9] 7.5301[–9] 7.8204[–9] 7.5406[–9]
      32 0.11866 4.0660[–9] 3.8747[–9] 4.0708[–9] 3.8794[–9]
      36 0.09375 2.2878[–9] 2.1507[–9] 2.2901[–9] 2.1530[–9]
      40 0.07594 1.3688[–9] 1.2668[–9] 1.3700[–9] 1.2680[–9]
      44 0.06276 8.5316[–10] 7.7563[–10] 8.5387[–10] 7.7630[–10]
      48 0.05274 5.5176[–10] 4.9160[–10] 5.5218[–10] 4.9199[–10]
      52 0.04493 3.6594[–10] 3.1869[–10] 3.6620[–10] 3.1894[–10]
      56 0.03874 2.4954[–10] 2.1184[–10] 2.4971[–10] 2.1199[–10]
      60 0.03375 1.7254[–10] 1.4233[–10] 1.7265[–10] 1.4243[–10]
      64 0.02966 1.1984[–10] 9.5735[–11] 1.1992[–10] 9.5802[–11]
      68 0.02628 8.4389[–11] 6.5035[–11] 8.4441[–11] 6.5081[–11]
      72 0.02344 5.8719[–11] 4.3471[–11] 5.8755[–11] 4.3503[–11]
      76 0.02104 4.0878[–11] 2.8934[–11] 4.0905[–11] 2.8956[–11]
      80 0.01898 2.8062[–11] 1.8889[–11] 2.8082[–11] 1.8905[–11]
      84 0.01722 1.8996[–11] 1.2085[–11] 1.9011[–11] 1.2096[–11]
      88 0.01569 1.2390[–11] 7.3978[–12] 1.2401[–11] 7.4061[–12]
      92 0.01436 7.8610[–12] 4.3696[–12] 7.8695[–12] 4.3757[–12]
      下载: 导出CSV

      Z ε/(V·m-1) τSIT/ns
      Exp Model I Model II
      3 7.425(2)[5] 2.629(21)[8] 2.58 2.55
      9.173(2)[5] 1.764(35)[8] 1.69 1.67
      18 5.93[7] 3.86(3)[14] 4.23 4.22
      7.14[7] 2.80(6)[14] 2.92 2.91
      8.06[7] 2.28(2)[14] 2.29 2.29
      8.60[7] 2.00(2)[14] 2.01 2.01
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

    • [1] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春.基于里德伯原子Stark效应射频电场测量灵敏度研究. 必威体育下载 , 2024, 73(9): 093202.doi:10.7498/aps.73.20240162
      [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生.等离子体环境中相对论效应对类氢离子光电离过程的影响. 必威体育下载 , 2024, 73(8): 083201.doi:10.7498/aps.73.20240016
      [3] 段春泱, 李娜, 赵岩, 李昌勇.利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能. 必威体育下载 , 2021, 70(5): 053301.doi:10.7498/aps.70.20201273
      [4] 陈昌远, 孙国华, 王晓华, 孙东升, 尤源, 陆法林, 董世海.刚性对称陀螺分子Stark效应的精确解. 必威体育下载 , 2021, 70(18): 180301.doi:10.7498/aps.70.20210214
      [5] 董慧杰, 王新宇, 李昌勇, 贾锁堂.镓原子的Stark能级结构. 必威体育下载 , 2015, 64(9): 093201.doi:10.7498/aps.64.093201
      [6] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂.铯Rydberg原子Stark态的避免交叉. 必威体育下载 , 2013, 62(1): 013201.doi:10.7498/aps.62.013201
      [7] 郑晖, 申亮, 白彬, 孙博.NiAl化合物表面成分的准标度关系与偏离放大效应. 必威体育下载 , 2012, 61(1): 016104.doi:10.7498/aps.61.016104
      [8] 李昌勇, 张临杰, 赵建明, 贾锁堂.铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 必威体育下载 , 2012, 61(16): 163202.doi:10.7498/aps.61.163202
      [9] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川.电场调谐InAs单量子点的发光光谱. 必威体育下载 , 2010, 59(6): 4279-4282.doi:10.7498/aps.59.4279
      [10] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬.等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 必威体育下载 , 2009, 58(8): 5274-5279.doi:10.7498/aps.58.5274
      [11] 高嵩, 徐学友, 周慧, 张延惠, 林圣路.电场中里德伯原子动力学性质的半经典理论研究. 必威体育下载 , 2009, 58(3): 1473-1479.doi:10.7498/aps.58.1473
      [12] 张 敏, 班士良.压力下应变异质结中施主杂质态的Stark效应. 必威体育下载 , 2008, 57(7): 4459-4465.doi:10.7498/aps.57.4459
      [13] 俞谦, 王健华, 李德杰, 王玉田, 庄岩, 姜炜, 黄绮, 周钧铭.InGaAs/InAlAs多量子阱结构的量子限制Stark效应研究. 必威体育下载 , 1996, 45(2): 274-282.doi:10.7498/aps.45.274
      [14] 蒋孟衡, 张森.高激发StarK能级寿命的计算. 必威体育下载 , 1995, 44(3): 357-364.doi:10.7498/aps.44.357
      [15] 丁广良, 刘炳模, 王嘉珉, 龚顺生.Cs原子里德伯态Stark能级场电离阈值与|ml|关系的测定. 必威体育下载 , 1994, 43(11): 1754-1758.doi:10.7498/aps.43.1754
      [16] 张森, 邱济真, 梅式民, 陈星.Ca和Sr原子n′dnl自电离态在低电场中的线性Stark效应. 必威体育下载 , 1990, 39(8): 32-37.doi:10.7498/aps.39.32
      [17] 何林生.动态Stark效应对双光子过程中原子和场的动力学行为的影响. 必威体育下载 , 1989, 38(12): 1927-1936.doi:10.7498/aps.38.1927
      [18] 徐雷, 赵有源, 王国益, 王兆永.Al原子高激发态nf2F光谱与Stark效应观察. 必威体育下载 , 1989, 38(10): 1658-1664.doi:10.7498/aps.38.1658
      [19] 潘晓川, 李家明.等电子系列离子的广义振子强度密度之标度关系. 必威体育下载 , 1985, 34(11): 1500-1508.doi:10.7498/aps.34.1500
      [20] 吴大猷.硷金属原子之Stark效应. 必威体育下载 , 1936, 2(1): 15-21.doi:10.7498/aps.2.15
    计量
    • 文章访问数:4479
    • PDF下载量:140
    • 被引次数:0
    出版历程
    • 收稿日期:2021-01-25
    • 修回日期:2021-04-25
    • 上网日期:2021-06-07
    • 刊出日期:2021-09-05

      返回文章
      返回
        Baidu
        map