搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽

    Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties

    Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li
    PDF
    HTML
    导出引用
    • 作为潜在的新型光电材料, 三元金属卤化物一直以来广受关注. 本文通过基于遗传算法的晶体结构预测软件USPEX, 对三元CuBiI化合物(CuBi 2I 7, Cu 2BiI 5, Cu 2BiI 7, Cu 3BiI 6, Cu 3Bi 2I 9, CuBi 3I 10, Cu 4BiI 7)在常压、绝对零度下的稳定晶体结构进行了全局搜索. 采用基于密度泛函理论的第一性原理计算方法, 计算了所发现结构的形成能、弹性系数和声子色散谱, 确定了12个具有良好的热力学、弹性力学及晶格动力学稳定性的CuBiI化合物结构. 这12个潜在稳定结构的理论带隙为1.13—3.09 eV, 其中CuBi 2I 7, Cu 2BiI 5, Cu 2BiI 7和Cu 4BiI 7在可见光区域表现出极强的光吸收能力(光吸收系数高于4 × 10 5cm –1), 光电转换效率最高可达31.63%. 计算结果表明三元金属卤化物CuBiI具有成为高性能太阳能电池吸收层材料的潜力.
      Ternary metal halides have attracted much attention as a new potential photoelectric material due to their ultra-high photoelectric conversion efficiencies. In this paper, USPEX, a crystal structure prediction software based on genetic algorithm, is used to investigate the potential crystal structures of ternary CuBiI compounds (CuBi 2I 7, Cu 2BiI 5, Cu 2BiI 7,Cu 3BiI 6, Cu 3Bi 2I 9, CuBi 3I 10, and Cu 4BiI 7) at atmospheric pressure and absolute zero temperature. Based on the density functional theory, the formation energies, elastic coefficients, and phonon dispersion curves of the predicted structures are calculated. The twelve stable CuBiI compounds with good thermodynamic, dynamical and mechanical stabilities are identified. The twelve crystal structures of CuBiI compound feature mainly the co-existence of Cu—I and Bi—I bonds and coordination polyhedrons of I atoms. The band gaps of twelve structures, calculated by HSE06 method, are 1.13–3.09 eV, indicating that the stoichiometric ratio affects the band gap obviously. Among them, the band gaps of Cu 2BiI 5- P1, Cu 2BiI 7- P1 and Cu 2BiI 7- P1-II are relatively small, close to the optimal band gap value for light absorption (1.40 eV), demonstrating that these compounds are suitable for serving as light absorbing materials in solar cells. The distribution of density of state (DOS) indicates that the top of the valence band of CuBiI compound is attributed to the hybridized Cu-3d and I-5p orbitals; the bottom of the conduction band of Cu 3BiI 6- R3 comes mainly from the Bi-6p and I-5p orbitals, and Cu-3d contributes little; the conduction band bottom of Cu 2BiI 7is mainly from the I-5p orbital, and the Cu-3d has little contribution. The bottoms of the conduction band of other structures originate mainly from the hybridized Bi-6p and I-5p orbitals. Electronic localization function and Bader charge analysis show that the Cu—I and Bi—I bonds have more ionic features and less covalent natures. The DOS distribution also confirms the covalent interaction of Cu/Bi-I. In addition, the CuBiI ternary compounds have extremely strong light absorption capacities (light absorption coefficient higher than 4 × 10 5cm –1) in the high-energy region of visible light and high power conversion efficiency (31.63%), indicating that the CuBiI ternary compounds have the potential to be an excellent photoelectric absorption material. Our investigation suggests the further study and potential applications of CuBiI ternary compound as absorber materials in solar cell.
          通信作者:范晓丽,xlfan@nwpu.edu.cn
        • 基金项目:国家重点研发计划(批准号: 2018YFB0703800)、陕西省杰出青年自然科学基金(批准号: 2019JC-10)和西北工业大学研究生创新创造种子基金(批准号: CX2020083)资助的课题
          Corresponding author:Fan Xiao-Li,xlfan@nwpu.edu.cn
        • Funds:Project supported by the National Key R&D Program of China (Grant No. 2018YFB0703800), the Natural Science Fund for Distinguished Yong Scholars of Shaanxi Province, China (Grant No. 2019JC-10), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. CX2020083)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

      • Structure
        name
        Space
        group
        Number of/
        (atoms·unit cell–1)
        Volume/
        3·unit cell–1)
        ${{E} }_{\rm{form} }$/
        (eV·atoms–1)
        Structure
        name
        Space
        group
        Number of/
        (atoms·unit cell–1)
        Volume/
        3·unit cell–1)
        ${{E} }_{\rm{form} }$/
        (eV·atoms–1)
        CuBi2I7-P1 P1 10 474.24 –0.362 CuBi2I7-P1-II P1 10 465.35 –0.385
        Cu2BiI5-P1 P1 8 295.03 –0.287 Cu2BiI5-Cm Cm 16 742.54 –0.290
        Cu3BiI6-P3 P3 10 404.63 –0.265 Cu3BiI6-R3 R3 30 1318.62 –0.244
        Cu4BiI7-P1 P1 12 428.29 –0.237 Cu4BiI7-P3 P3 12 451.33 –0.231
        Cu3Bi2I9-P1 P1 14 645.41 –0.294 CuBi3I10-P1 P1 14 691.08 –0.402
        Cu2BiI7-P1 P1 10 420.79 –0.225 Cu2BiI7-P1-II P1 10 420.68 –0.226
        下载: 导出CSV

        Cij/GPa CuBi2I7-P1 CuBi2I7-P1-II Cu2BiI5-P1 Cu2BiI5-Cm Cu3BiI6-P3 Cu3BiI6-R3 Cu4BiI7-P1 Cu4BiI7-P3 Cu3Bi2I9-P1 CuBi3I10-P1 Cu2BiI7-P1 Cu2BiI7-P1-II
        C11 8.34 9.03 39.90 4.76 11.99 17.59 23.63 32.25 17.16 2.82 9.71 3.12
        C22 12.61 14.16 29.93 35.09 18.34 20.42 9.34 14.12 10.34
        C33 8.35 9.00 35.71 5.64 5.92 5.05 23.61 8.90 11.86 8.62 14.43 26.51
        C44 3.52 3.62 10.18 1.73 1.01 3.53 6.87 1.41 3.91 3.27 6.46 7.16
        C55 3.74 2.99 9.96 7.83 3.56 1.91 3.73 4.52
        C66 2.41 4.43 6.77 1.24 4.42 6.13 8.72 11.26 6.01 1.93 3.13 3.18
        C12 4.73 4.45 9.13 1.63 3.01 5.22 4.56 9.71 6.13 1.96 4.71 3.19
        C13 2.61 2.57 14.13 2.77 1.33 2.99 7.76 3.30 3.14 2.11 5.61 6.45
        C14 –2.07 –0.04 4.02 0.04 1.7 –1.84 0.28 0.51 –0.63 –0.17 –0.32
        C15 0.18 0.21 0.18 –0.67 –0.15 –0.38 2.85 0.06 –0.79 –0.21 –2.11 0.54
        C16 0.79 2.27 0.12 –0.27 –0.51 0.86 –1.73 –0.32
        C23 2.69 2.76 14.94 2.42 5.49 6.79 2.98 7.51 7.18
        C24 –2.53 0.12 5.64 –0.99 2.280 –0.05 –2.43 2.11
        C25 0.28 0.16 0.17 –0.12 2.68 0.49 –0.09 –3.12 1.54
        C26 0.49 1.72 –0.02 0.04 0.41 1.47 1.35 1.01
        C34 –1.69 –0.27 5.74 –0.56 2.53 –0.89 –1.51 0.36
        C35 –1.76 0.39 0.12 –0.90 3.43 –0.21 –2.38 –3.43 1.76
        C36 1.47 1.17 –0.04 1.72 0.80 0.81 0.13 –0.48
        C45 –0.41 0.83 0.13 –0.47 0.21 0.85 1.26 0.19
        C46 –0.10 0.42 0.01 0.12 1.75 0.34 –0.62 –2.13 –0.69
        C56 –0.58 –0.29 1.485 –1.07 0.94 –0.53 0.82 0.72
        下载: 导出CSV

        Structure name a b c α/(°) β/(°) γ/(°) Cu—I/Å Bi—I/Å
        CuBi2I7-P1 7.93 7.94 7.92 97.67 82.58 76.98 2.53—2.55 3.02—3.32
        CuBi2I7-P1-II 8.05 7.85 7.75 97.64 100.86 100.78 2.54—2.55 3.03—3.22
        Cu2BiI5-P1 4.42 7.62 9.57 95.94 103.35 106.82 2.59—2.67 3.09—3.18
        Cu2BiI5-Cm 16.64 4.33 12.22 90.00 122.51 90.00 2.57—2.72 2.84—3.50
        Cu3BiI6-P3 7.89 7.89 7.54 90.00 90.00 120.00 2.54—2.61 3.02—3.29
        Cu3BiI6-R3 11.40 11.40 11.72 90.00 90.00 120.00 2.52—2.56 3.05—3.35
        Cu4BiI7-P1 7.61 7.79 7.64 101.68 100.50 98.22 2.56—2.74 3.06—3.22
        Cu4BiI7-P3 8.32 8.32 7.52 90.00 90.00 120.00 2.64—2.68 3.09—3.22
        Cu3Bi2I9-P1 7.67 8.59 9.85 84.58 88.98 86.74 2.55—2.70 2.99—3.28
        CuBi3I10-P1 9.46 10.12 7.85 103.09 106.70 77.25 2.53—2.54 2.99—3.32
        Cu2BiI7-P1 7.33 7.90 7.92 104.09 108.49 81.74 2.59—2.64 3.05—3.34
        Cu2BiI7-P1-II 9.00 7.78 7.20 109.91 89.24 64.61 2.58—2.70 2.98—3.34
        下载: 导出CSV

        Structure name Eg/eV VBM CBM Bader charge SLME/%
        HSE06 PBE Cu/(e·atom–1) Bi/(e·atom–1) I/(e·atom–1)
        CuBi2I7-P1 2.39 1.48 0 0 0 0 0 0 0.33 1.08 –0.36 10.75
        CuBi2I7-P1-II 2.13 1.21 0 0 0 0 0.5 0 0.33 1.09 –0.36 9.50
        Cu2BiI5-P1 1.56 0.84 0 0 0.5 0 0.5 0 0.34 1.04 –0.34 22.20
        Cu2BiI5-Cm 1.87 0.89 0 0 0 0 0 0 0.29 1.07 –0.33 7.50
        Cu3BiI6-P3 3.09 1.97 0.05 0 0 0 0 0.5 0.29 1.08 –0.33 2.86
        Cu3BiI6-R3 2.81 1.85 0 0 0 0.5 0 0.5 0.31 1.01 –0.32 5.49
        Cu4BiI7-P1 2.19 1.22 0 0 0 0 0.5 0 0.30 1.03 –0.32 15.77
        Cu4BiI7-P3 2.21 1.21 0 0 0.06 0 0 0.5 0.32 1.06 –0.33 13.61
        Cu3Bi2I9-P1 2.03 1.17 0 0 0.5 0 0 0.5 0.34 1.02 –0.34 19.02
        CuBi3I10-P1 2.36 1.41 0 0.5 0 0 0.5 0 0.33 1.09 –0.36 4.17
        Cu2BiI7-P1 1.13 0.50 0 0 0 0 0.5 0 0.37 1.09 –0.26 31.63
        Cu2BiI7-P1-II 1.40 0.60 0 0 0 0 0.5 0.5 0.35 1.06 –0.25 28.30
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

      • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋.基于第一性原理研究杂质补偿对硅光电性能的影响. 必威体育下载 , 2024, 73(11): 116301.doi:10.7498/aps.73.20231814
        [2] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波.二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究. 必威体育下载 , 2020, 69(19): 197102.doi:10.7498/aps.69.20200848
        [3] 罗娅, 张耘, 梁金铃, 刘林凤.铜铁镁三掺铌酸锂晶体的第一性原理研究. 必威体育下载 , 2020, 69(5): 054205.doi:10.7498/aps.69.20191799
        [4] 樊涛, 曾庆丰, 于树印.Hf-N体系的晶体结构预测和性质的第一性原理研究. 必威体育下载 , 2016, 65(11): 118102.doi:10.7498/aps.65.118102
        [5] 马振宁, 蒋敏, 王磊.Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 必威体育下载 , 2015, 64(18): 187102.doi:10.7498/aps.64.187102
        [6] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华.Hf-C体系的高压结构预测及电子性质第一性原理模拟. 必威体育下载 , 2015, 64(23): 236102.doi:10.7498/aps.64.236102
        [7] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵.Cu-Co共掺杂ZnO光电性质的第一性原理计算. 必威体育下载 , 2014, 63(4): 046301.doi:10.7498/aps.63.046301
        [8] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮.3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 必威体育下载 , 2014, 63(16): 163101.doi:10.7498/aps.63.163101
        [9] 石彦立, 韩伟, 卢铁城, 陈军.含羟基结构熔石英光电性质的第一性原理研究. 必威体育下载 , 2014, 63(8): 083101.doi:10.7498/aps.63.083101
        [10] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰.Au-Sn金属间化合物的第一性原理研究. 必威体育下载 , 2013, 62(24): 247102.doi:10.7498/aps.62.247102
        [11] 赵立凯, 赵二俊, 武志坚.5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 必威体育下载 , 2013, 62(4): 046201.doi:10.7498/aps.62.046201
        [12] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜.第一性原理研究稀土掺杂ZnO结构的光电性质. 必威体育下载 , 2013, 62(4): 047101.doi:10.7498/aps.62.047101
        [13] 王风, 王新强, 聂招秀, 程志梅, 刘高斌.三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 必威体育下载 , 2011, 60(4): 046301.doi:10.7498/aps.60.046301
        [14] 刘春华, 欧阳楚英, 嵇英华.第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 必威体育下载 , 2011, 60(7): 077103.doi:10.7498/aps.60.077103
        [15] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰.Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 必威体育下载 , 2011, 60(3): 037104.doi:10.7498/aps.60.037104
        [16] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀.三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 必威体育下载 , 2011, 60(9): 096301.doi:10.7498/aps.60.096301
        [17] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范.Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 必威体育下载 , 2010, 59(11): 8037-8041.doi:10.7498/aps.59.8037
        [18] 于大龙, 陈玉红, 曹一杰, 张材荣.Li2NH晶体结构建模和电子结构的第一性原理研究. 必威体育下载 , 2010, 59(3): 1991-1996.doi:10.7498/aps.59.1991
        [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军.过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 必威体育下载 , 2007, 56(9): 5359-5365.doi:10.7498/aps.56.5359
        [20] 潘志军, 张澜庭, 吴建生.CoSi电子结构第一性原理研究. 必威体育下载 , 2005, 54(1): 328-332.doi:10.7498/aps.54.328
      计量
      • 文章访问数:5776
      • PDF下载量:163
      • 被引次数:0
      出版历程
      • 收稿日期:2021-01-22
      • 修回日期:2021-05-21
      • 上网日期:2021-10-12
      • 刊出日期:2021-10-20

        返回文章
        返回
          Baidu
          map