The electric ion extraction, which plays an important role in productivity and abundance of product, is a critical step in laser isotope separation (LIS) technology. Several collision processes happen during the electric ion extraction, such as resonant and non-resonant charge exchange between ion and atom, the secondary ionization process and the ion-electron recombination. The resonant charge exchange process between target isotope ions and no-target background atoms is one of the major reasons of product contamination. As a result, the study of ion extraction with the consideration of resonant charge exchange process is essential. However, the resonant charge exchange process in ion extraction has not received enough attention. Besides, contradictory findings have been deduced in published studies. Therefore, it is necessary to clarify the effect of resonant charge exchange process in the electric ion extraction. In this article, the particle-in-cell (PIC) method and preprocessing hybrid-PIC method are adopted in both one- and two-dimensional numerical simulation. The preprocessing hybrid-PIC method is a calculation scheme by which accurate results can be obtained with less computational consumption. In this calculation scheme, the PIC method and hybrid-PIC method are used sequentially in different stages of ion extraction process. One-dimensional parallel type simulation cases are carried out under the circumstances of different initial plasma densities, applied voltages and background atom densities. The results show that the resonant charge exchange process happens in both shield layer and sheath layer. The ionic resonant charge exchange proportion in shield layer and sheath layer are related to the ion extraction time and average travel length in background vapor, respectively. Besides, they are proportional to the resonant charge exchange cross section and background atom density. And an empirical formula for deriving the resonant charge exchange ratio roughly is proposed. Two-dimensional simulations are carried out in four electrode configurations: parallel type, alternately biased parallel type, Π-type, and M-type. The extraction mechanisms are discussed and compared with each other. The simulation results show that M-type electrode configuration has the minimum resonant charge exchange ratio and extraction time among the configurations above. The results and conclusions provide an important reference for designing the LIS device.