搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

张鹏, 朴红光, 张英德, 黄焦宏

Research progress of critical behaviors and magnetocaloric effects of perovskite manganites

Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong
PDF
HTML
导出引用
  • 钙钛矿锰氧化物具备磁热效应高、性能稳定可控、成本低廉等显著优点, 是适用于室温磁制冷领域的优质候选工质材料之一. 但该体系内部电磁学性质复杂, 特别是关于铁磁相互作用机制和磁相变性质等关键科学问题仍然有待深入探索. 分析磁相变临界行为有利于揭示磁性材料内部的铁磁相互作用距离和机制等重要信息. 本文简要介绍了钙钛矿锰氧化物相关理论背景以及各种磁相变临界行为分析方法, 随后归纳了近年来多种钙钛矿锰氧化物的磁相变临界行为研究, 系统对比了不同带宽典型锰氧化物在单晶和多晶形态下的磁相变临界行为, 讨论了A/B位掺杂不同元素以及不同制备工艺条件对其临界参数的影响, 对其中渡越于一级和二级相变的La-Ca-Mn-O体系在不同磁场范围下的临界参数演化进行了讨论. 最后对处于磁相变三重临界点附近的部分锰氧化物材料的磁热效应研究进行了总结和展望.
    Hole-doped perovskite-type manganites have received intensive attention due to their intriguing physical phenomena such as giant magnetocaloric effect and magnetic-phase transitions. However, the mechanism of internal ferromagnetic interaction still needs to be further explored due to the complex natures of competing double-exchange (DE) and super-exchange (SE) interaction, Jahn-Teller (JT) polaron localization, charge ordering, and phase separation scenarios. Critical exponent analysis near magnetic phase transition is a powerful tool to investigate the details of the ferromagnetic interactions and has been used frequently in various magnetocaloric materials. In this article, the critical behavior analyses of perovskite manganites in recent years are comprehensively reviewed. A large number of studies have shown that even in single-phase materials with uniform structure and composition, the critical behavior can be affected by multiple factors such as grain boundary density and the degree of disorder, making them difficult to fully describe the intrinsic ferromagnetism. In this review, firstly, the critical behaviors of typical manganites with different bandwidths in single crystal and polycrystalline are discussed. In a double-exchange dominated system such as La-Sr-Mn-O, short-range 3D-Heisenberg model is basically in good accordance with optimally-doped single crystal sample. However, it would be replaced by long-range mean-field critical behavior in polycrystalline sample when the correlation length exceeds the crystallite size. In a typical intermediate bandwidth system such as La-Ca-Mn-O exhibiting a complex phase diagram described by competing SE/DE interactions, JT polaron localization/delocalization, and Griffith phase disorder, the critical exponent can vary from 3D-Heisenberg model to tricritical mean-field model, for the crossover from first to second order phase transition. Secondly, the studies of elements doping and different fabrication methods indicate that the critical behavior of manganites can be effectively modulated, and vary between different theoretical models including even nonuniversal exponent for highly disordered magnetic system. In the following part, the influence of magnetic field on the critical behavior and field induced crossover phenomena of La-Ca-Mn-O system near tricritical point is analyzed and discussed in detail. Furthermore, the magnetocaloric effects of materials near the tricritical point collected in many studies are listed and compared with each other. Excellent magnetocaloric properties with high magnetic entropy change and relative cooling power in plenty of researches indicate that ideal magnetocaloric material would be very likely to be found in the materials near the tricritical point, which lay at the borderline between first-order and second-order phase transition. Consequently, it is suggested that perovskite manganites are still quite promising in the potential magnetic refrigeration applications, and need to be further developed.
        通信作者:朴红光,hgpiao@ctgu.edu.cn
      • 基金项目:湖北省自然科学基金(批准号: ZRMS2018001866)、湖北工业大学博士启动金(批准号: BSQD13030)和国家重点研发计划(批准号: 2017YFB0903702)资助的课题
        Corresponding author:Piao Hong-Guang,hgpiao@ctgu.edu.cn
      • Funds:Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. ZRMS2018001866), the Doctoral Research Startup Fund of Hubei University of Technology, China (Grant No. BSQD13030), and the National Key R&D Program of China (Grant No. 2017YFB0903702)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

    • Model β γ δ Ref.
      Mean-field 0.5 1.0 3.0 [23]
      Tricritical-Mean-field 0.25 1.0 5.0 [23]
      3D-Heisenberg 0.365 1.386 4.80 [24]
      3D-Ising 0.325 1.241 4.82 [24]
      下载: 导出CSV

      Material Technique β γ δ Model Ref.
      La0.7Ba0.3MnO3SC MAP 0.35 1.41 5.5 3D-Heisenberg [26]
      La0.7Ba0.3MnO3PC MAP 0.493 1.059 3.15 Mean-field [27]
      La0.67Ba0.33MnO3PC MAP 0.464 1.29 3.78 Mean-field/3D-Heisenberg [28]
      La0.7Sr0.3MnO3SC MAP 0.37 1.22 4.25 close to 3D-Heisenberg [29]
      La0.75Sr0.25MnO3SC MAP 0.4 1.27 4.12 Mean-field/3D-Ising [30]
      La0.8Sr0.2MnO3PC MAP 0.5 1.08 3.13 Mean-field [31]
      La0.875Sr0.125MnO3SC MAP 0.37 1.38 4.72 3D-Heisenberg [32]
      La0.6Ca0.4MnO3PC MAP 0.25 1.03 5 Tricritical-Mean-field [33]
      La0.79Ca0.21MnO3SC MAP 0.09 1.71 20 nonuniversal [34]
      La0.8Ca0.2MnO3SC MAP 0.374 1.382 4.779 3D-Heisenberg [35]
      La0.82Ca0.18MnO3SC MAP 0.374 1.379 4.783 3D-Heisenberg [35]
      Nd0.6Sr0.4MnO3SC KF 0.308 1.172 4.75 3D-Ising [36]
      Nd0.6Sr0.4MnO3PC MAP 0.51 1.01 3.13 Mean-field [37]
      Nd0.67Sr0.33MnO3PC MAP 0.23 1.05 5.13 Tricritical-Mean-field [37]
      Nd0.7Sr0.3MnO3PC MAP 0.271 0.922 4.4 Tricritical-Mean-field [38]
      Pr0.6Sr0.4MnO3SC KF 0.312 1.106 4.545 3D-Ising [36]
      Pr0.6Sr0.4MnO3SC MAP 0.365 1.309 4.648 3D-Heisenberg [39]
      Pr0.6Sr0.4MnO3PC MAP 0.276 0.918 4.325 Tricritical-Mean-field [40]
      KF 0.273 1.001 4.325
      Pr0.71Ca0.29MnO3SC MAP 0.37 1.38 4.62 3D-Heisenberg [41]
      Pr0.71Ca0.29MnO3PC MAP 0.521 0.912 2.71 Mean-field [42]
      Pr0.73Ca0.27MnO3SC MAP 0.36 1.36 4.81 3D-Heisenberg [41]
      Pr0.73Ca0.27MnO3PC MAP 0.362 1.132 4.09 3D-Heisenberg [42]
      注: SC表示单晶; PC表示多晶.
      下载: 导出CSV

      Material Technique β γ δ Model Ref.
      La0.67(Ca0.5Ba0.5)0.33MnO3 MAP 0.402 1.110 3.761 Mean-field/3D-Heisenberg [28]
      La0.7Ca0.15Ba0.15MnO3 MAP 0.438 1.032 3.360 Mean-field [27]
      La0.7Ca0.2Ba0.1MnO3 MAP 0.284 0.909 4.200 Tricritical-Mean-field/3D-Ising [43]
      KF 0.297 0.925 4.110
      La0.7Ca0.15Sr0.15MnO3 MAP 0.491 1.054 3.150 Mean-field [27]
      La0.7Ca0.1Sr0.2MnO3 KF 0.360 1.220 4.400 3D-Heisenberg [44]
      La0.7Ca0.2Sr0.1MnO3 KF 0.260 1.060 5.100 Tricritical-Mean-field [44]
      La0.69Dy0.01Ca0.3MnO3 MAP 0.230 0.920 5.000 Tricritical-Mean-field [45]
      KF 0.250 0.870 4.480
      La0.7Ca0.28Sn0.02MnO3 KF 0.218 0.858 4.936 Tricritical-Mean-field [46]
      La0.7Ca0.26Sn0.04MnO3 KF 0.467 1.095 3.345 Mean-field [46]
      La0.75Dy0.05Sr0.2MnO3 MAP 0.266 0.920 4.460 Tricritical-Mean-field [47]
      KF 0.272 0.931 4.420
      La0.1Nd0.6Sr0.3MnO3 MAP 0.248 1.066 5.170 Tricritical-Mean-field [48]
      KF 0.257 1.120 5.170
      Pr0.4Sm0.15Sr0.45MnO3 KF 0.324 1.212 4.812 3D-Ising [49]
      Pr0.3Sm0.25Sr0.45MnO3 KF 0.255 0.957 5.105 Tricritical-Mean-field [49]
      La0.57Nd0.1Sr0.33MnO3 MAP 0.356 1.152 4.235 3D-Heisenberg [50]
      KF 0.368 1.191 4.236
      La0.57Nd0.1Sr0.280.05MnO3 MAP 0.312 1.173 4.760 3D-Ising [50]
      KF 0.326 1.183 4.619
      Pr0.6Sr0.4MnO3 MAP 0.276 0.918 4.325 Tricritical-Mean-field [40]
      KF 0.273 1.001 4.325
      Pr0.6Sr0.30.1MnO3 MAP 0.253 0.987 4.890 Tricritical-Mean-field [40]
      KF 0.242 0.945 4.890
      Pr0.50.1Sr0.4MnO3 MAP 0.323 1.113 4.446 3D-Ising [40]
      KF 0.325 1.092 4.446
      注: □表示离子空位.
      下载: 导出CSV

      Material Technique β γ δ Model Ref.
      La0.67Ba0.33Mn0.98Ti0.02O3 MAP 0.537 1.015 2.890 Mean-field [51]
      KF 0.551 1.020 2.851
      La0.67Ba0.33Mn0.95Fe0.05O3 KF 0.504 1.013 3.040 Mean-field [52]
      La0.7Ba0.3Mn0.95Ti0.05O3 MAP 0.374 1.228 4.260 3D-Heisenberg [53]
      La0.7Ba0.3Mn0.9Ti0.1O3 MAP 0.339 1.307 4.780 3D-Ising [53]
      La0.8Ba0.2Mn0.8Fe0.2O3 MAP 0.365 1.227 4.362 3D-Heisenberg [54]
      KF 0.318 1.159 4.645
      La0.67Sr0.33Mn0.9Fe0.1O3 MAP 0.450 1.240 3.740 Mean-field/3D-Heisenberg [55]
      KF 0.538 1.330 3.470
      La0.7Sr0.3Mn0.95Al0.05O3 KF 0.458 1.001 3.185 Mean-field [56]
      La0.7Sr0.3Mn0.95Ti0.05O3 KF 0.344 1.149 4.340 Mean-field/3D-Heisenberg [56]
      La0.7Sr0.3Mn0.9Co0.1O3 KF 0.457 1.114 3.440 Mean-field/3D-Heisenberg [57]
      La0.7Sr0.3Mn0.99Ni0.01O3 MAP 0.394 1.092 3.990 Mean-field/3D-Heisenberg [58]
      La0.7Sr0.3Mn0.98Ni0.02O3 MAP 0.400 1.082 3.790 Mean-field/3D-Heisenberg [58]
      La0.7Sr0.3Mn0.97Ni0.03O3 MAP 0.468 1.010 2.670 Mean-field [58]
      La0.7Sr0.3Mn0.98Cu0.02O3 KF 0.464 1.162 3.546 close to Mean-field [59]
      La0.7Sr0.3Mn0.96Cu0.04O3 KF 0.449 1.202 3.681 close to Mean-field [59]
      La0.67Ca0.33Mn0.9Cr0.1O3 MAP 0.555 1.170 2.710 Mean-field [60]
      La0.67Ca0.33Mn0.75Cr0.25O3 MAP 0.680 1.090 2.936 close to Mean-field [60]
      La0.67Ca0.33Mn0.9Ga0.1O3 MAP 0.380 1.365 4.590 3D-Heisenberg [61]
      KF 0.387 1.362 4.520
      La0.7Ca0.3Mn0.95Ti0.05O3 KF 0.601 1.171 2.950 Mean-field [62]
      La0.7Ca0.3Mn0.9Ti0.1O3 KF 0.389 1.403 4.400 3D-Heisenberg [62]
      La0.7Ca0.3Mn0.91Ni0.09O3 MAP 0.171 0.976 6.700 Tricritical-Mean-field [63]
      La0.7Ca0.3Mn0.88Ni0.12O3 MAP 0.262 0.978 4.700 Tricritical-Mean-field [63]
      La0.7Ca0.3Mn0.85Ni0.15O3 MAP 0.320 0.990 4.100 3D-Ising [63]
      La0.7Ca0.3Mn0.95Cu0.05O3 MAP 0.490 1.040 3.120 Mean-field [64]
      La0.7Ca0.3Mn0.9Zn0.1O3 MAP 0.474 1.152 3.430 Mean-field [65]
      La0.8Ca0.2Mn0.9Co0.1O3 MAP 0.204 1.969 11.983 nonuniversal [66]
      KF 0.123 1.351 11.983
      La0.8Ca0.2Mn0.8Co0.2O3 MAP 0.401 1.332 4.321 3D-Heisenberg [66]
      KF 0.418 1.303 4.321
      Nd0.67Sr0.33Mn0.9Cr0.1O3 MAP 0.337 0.784 3.326 nonuniversal [67]
      Nd0.67Sr0.33Mn0.9Fe0.1O3 MAP 0.436 0.94 3.156 Mean-field [67]
      Nd0.67Sr0.33Mn0.9Co0.1O3 MAP 0.431 0.929 3.155 Mean-field [67]
      Pr0.67Sr0.33Mn0.95Al0.05O3 MAP 0.381 1.323 4.635 3D-Heisenberg [68]
      KF 0.381 1.320 4.635
      Pr0.67Sr0.33Mn0.9Al0.1O3 MAP 0.374 1.333 4.667 3D-Heisenberg [68]
      KF 0.377 1.331 4.667
      下载: 导出CSV

      Material Technique β γ δ Model Ref.
      La0.6Sr0.4MnO3SG/800 ºC KF 0.560 1.140 3.035 close to Mean-field [69]
      La0.6Sr0.4MnO3SG/1100 ºC KF 0.480 1.052 3.190 Mean-field [69]
      La0.6Sr0.4MnO3SS KF 0.530 1.110 3.094 Mean-field [69]
      La0.67Sr0.33MnO3SS MAP 0.333 1.325 4.978 3D-Heisenberg [70]
      La0.67Sr0.33MnO3SG MAP 0.500 1.150 3.290 Mean-field [55]
      KF 0.479 1.260 3.630
      La0.7Ba0.1Ca0.1Sr0.1MnO3WM MAP 0.448 1.148 3.563 Mean-field [71]
      KF 0.476 1.029 3.096
      La0.7Ba0.1Ca0.1Sr0.1MnO3SG MAP 0.235 1.153 5.906 Tricritical-Mean-field [71]
      KF 0.262 1.165 5.447
      La0.7Ca0.2Ba0.1MnO3BM MAP 0.265 0.867 4.271 Tricritical-Mean-field [72]
      KF 0.261 0.988 4.386
      La0.7Ca0.2Ba0.1MnO3SS MAP 0.284 0.909 4.200 Tricritical-Mean-field/3D-Ising [43]
      KF 0.297 0.925 4.110
      La0.7Ca0.2Sr0.1MnO3BM MAP 0.397 0.966 3.430 3D-Heisenberg [73]
      La0.7Ca0.2Sr0.1MnO3SS MAP 0.276 0.966 4.500 Tricritical-Mean-field [74]
      KF 0.315 0.954 4.028
      La0.7Ca0.2Sr0.1MnO3SG MAP 0.484 1.037 3.143 Mean-field [74]
      KF 0.469 1.013 3.160
      La0.7Ca0.3MnO3BM/40 nm MAP 0.485 1.051 3.100 Mean-field [75]
      La0.7Ca0.3MnO3BM/16 nm MAP 0.621 0.825 2.200 nonuniversal
      La0.7Ca0.3MnO3SG MAP 0.240 1.010 3.090 Tricritical-Mean-field [76]
      La0.75Ca0.25MnO3SG MAP 0.521 0.94 2.804 Mean-field [77]
      KF 0.529 0.939 2.775
      La0.8Ca0.2MnO3SG MAP 0.505 1.004 3.060 Mean-field [78]
      KF 0.499 1.007 3.060
      Nd0.7Ca0.15Sr0.15MnO3BM/4 h KF 0.243 0.907 4.540 Tricritical-Mean-field [79]
      Nd0.7Ca0.15Sr0.15MnO3BM/24 h KF 0.311 1.100 4.130 3D-Ising [79]
      Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3SS MAP 0.644 1.075 2.763 Mean-field [80]
      KF 0.622 1.097 2.763
      Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3SG MAP 0.357 1.292 4.290 3D-Heisenberg [80]
      KF 0.370 1.220 4.290
      Pr0.8Sr0.2MnO3SG MAP 0.260 0.978 4.760 Tricritical-Mean-field [81]
      KF 0.260 0.993 4.810
      Pr0.8Sr0.2MnO3SS MAP 0.318 1.260 4.960 3D-Ising [82]
      KF 0.326 1.246 4.960
      注: SS表示固相反应法; SG表示溶胶凝胶法(附烧结温度工艺条件); WM表示湿混法; BM表示球磨法(附平均粒径尺寸或球磨时间等工艺条件).
      下载: 导出CSV

      Material Field range Technique β γ δ Model Ref.
      La0.6Ca0.4MnO3 1—2 T KF 0.249 1.008 5.043 Tricritical-Mean-field [83]
      2—3 T KF 0.255 0.857 4.359 crossover
      3—4 T KF 0.262 0.833 4.18 crossover
      4—5 T KF 0.267 0.797 3.983 crossover
      5—6 T KF 0.263 0.776 3.954 close to Tricritical-Mean-field
      La0.8Ca0.2MnO3 1—2 T KF 0.349 1.231 4.524 3D-Heisenberg/Ising [83]
      2—3 T KF 0.316 1.081 4.421 crossover
      3—4 T KF 0.281 0.992 4.534 crossover
      4—5 T KF 0.272 0.91 4.341 crossover
      5—6 T KF 0.259 0.918 4.552 Tricritical-Mean-field
      La0.7Ca0.275Ba0.025MnO3 2—3 T MAP 0.209 Tricritical-Mean-field [84]
      3—4 T MAP 0.218 1.098 6.04
      4—5 T MAP 0.227 1.06 5.67
      La0.7Ca0.25Ba0.05MnO3 1—2 T MAP 0.221 Tricritical-Mean-field [84]
      2—3 T MAP 0.225 1.052 5.68
      3—4 T MAP 0.235 1.012 5.31
      4—5 T MAP 0.249 1.022 5.1
      La0.7Ca0.225Ba0.075MnO3 1—2 T MAP 0.216 0.973 5.5 Tricritical-Mean-field [84]
      2—3 T MAP 0.224 0.982 5.38
      3—4 T MAP 0.238 1.016 5.27
      4—5 T MAP 0.253 0.992 4.92
      La0.7Ca0.2Ba0.1MnO3 1—2 T MAP 0.301 1.382 5.59 Tricritical-Mean-field/3D-Ising [84]
      2—3 T MAP 0.312 1.38 5.42 3D-Ising
      3—4 T MAP 0.322 1.381 5.29 3D-Ising
      4—5 T MAP 0.326 1.342 5.12 3D-Ising
      La0.7Ca0.3MnO3 10—14 T MAP 0.252 1.005 Tricritical-Mean-field [85]
      下载: 导出CSV

      Material TC/K ΔH/ T –ΔSM/(J·kg–1·K–1) RCP/(J·kg–1) Ref.
      La0.7Ba0.2Ca0.1MnO3SG 350 2 2.35 70 [87]
      5 5.80 167
      La0.7Ba0.2Ca0.1Mn0.95Al0.05O3SG 321 2 2.12 85 [87]
      5 5.30 180
      La0.7Ba0.2Ca0.1Mn0.9Al0.1O3SG 300 2 1.86 96 [87]
      5 4.60 193
      La0.7Ca0.3MnO3SS 255 1 4.52 45.2 [46]
      La0.7Ca0.28Sn0.02MnO3SS 200 1 2.79 55.8 [46]
      La0.7Ca0.26Sn0.04MnO3SS 167 1 1.58 69.5 [46]
      La0.69Dy0.01Ca0.3MnO3SS 246 5 14.94 100.24 [45]
      La0.6Ca0.3Ag0.1MnO3SS 256 2 3.89 55.51 [88]
      5 6.95 179.78
      La0.6Ca0.3Ag0.1MnO3SG 270 2 5.55 84.46 [88]
      5 8.67 230.35
      La0.6Ca0.3Sr0.1MnO3SG 304 2 2.89 98.17 [89]
      5 5.26 262.53
      La0.7Ca0.2Sr0.1MnO3SS 284 3 4.30 150 [90]
      La0.7Ca0.2Sr0.1MnO3BM 297 1 1.47 54.4 [73]
      La0.7Ca0.19Sr0.11MnO3BM 301 1 1.42 52.5 [73]
      La0.7Ca0.18Sr0.12MnO3BM 309 1 1.38 44.2 [73]
      La0.7Ca0.27Na0.03MnO3SS 260 4 8.10 232 [91]
      La0.7Ca0.24Na0.06MnO3SS 263 4 7.00 234 [91]
      La0.7Ca0.21Na0.09MnO3SS 271 4 6.90 236 [91]
      La0.7Ba0.1Ca0.1Sr0.1MnO3WM 315 2 1.34 102.51 [71]
      5 3.16 284.53
      La0.7Ba0.1Ca0.1Sr0.1MnO3SG 330 2 2.58 74.92 [71]
      5 4.89 229.29
      La0.8Na0.2Mn0.97Bi0.03O3SS 320 5 4.77 218 [92]
      La0.8Na0.2Mn0.97Bi0.03O3SG 257 5 5.88 252 [92]
      La0.4Pr0.3Ca0.1Sr0.2MnO3SS 289 2 3.08 83.3 [86]
      La0.6Gd0.1Sr0.3Mn0.8Si0.2O3SG 271 5 5.35 180 [93]
      La0.7Bi0.05Sr0.15Ca0.1Mn0.95In0.05O3SG 310 5 6.00 258 [94]
      注: 1) 表中符号含义如下:TC为居里温度; ΔH为磁场变化范围; –ΔSM为最大磁熵变值; RCP为相对制冷能力, 由磁熵变曲线的峰值与半峰宽数值相乘而得; 2) SS表示固相反应法; SG表示溶胶凝胶法; WM表示湿混法; BM表示球磨法.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

    • [1] 林源, 胡凤霞, 沈保根.相变调控、磁热效应和反常热膨胀. 必威体育下载 , 2023, 72(23): 237501.doi:10.7498/aps.72.20231118
      [2] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏.非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 必威体育下载 , 2022, 71(2): 026102.doi:10.7498/aps.70.20211530
      [3] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根.HoCoSi快淬带的磁性和各向异性磁热效应. 必威体育下载 , 2022, 71(16): 167501.doi:10.7498/aps.71.20220683
      [4] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅.一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 必威体育下载 , 2018, 67(20): 207501.doi:10.7498/aps.67.20180927
      [5] 郝志红, 王海英, 张荃, 莫兆军.Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 必威体育下载 , 2018, 67(24): 247502.doi:10.7498/aps.67.20181750
      [6] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚.间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 必威体育下载 , 2018, 67(7): 077501.doi:10.7498/aps.67.20172250
      [7] 霍军涛, 盛威, 王军强.非晶合金的磁热效应及磁蓄冷性能. 必威体育下载 , 2017, 66(17): 176409.doi:10.7498/aps.66.176409
      [8] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根.磁热效应材料的研究进展. 必威体育下载 , 2016, 65(21): 217502.doi:10.7498/aps.65.217502
      [9] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉.热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 必威体育下载 , 2016, 65(2): 027501.doi:10.7498/aps.65.027501
      [10] 王强.电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序. 必威体育下载 , 2015, 64(18): 187501.doi:10.7498/aps.64.187501
      [11] 王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰, 赵建军.钙钛矿锰氧化物(La1-xGdx)4/3Sr5/3Mn2O7 (x=0, 0.025) 磁性和输运性质研究. 必威体育下载 , 2015, 64(6): 067501.doi:10.7498/aps.64.067501
      [12] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德.钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 必威体育下载 , 2014, 63(8): 087503.doi:10.7498/aps.63.087503
      [13] 王芳, 原凤英, 汪金芝.Mn42Al50-xFe8+x合金的磁性和磁热效应. 必威体育下载 , 2013, 62(16): 167501.doi:10.7498/aps.62.167501
      [14] 陈辉, 张国营, 杨丹, 高娇.确定磁性体在绝热磁化过程中达到最高温度的方法. 必威体育下载 , 2012, 61(9): 097501.doi:10.7498/aps.61.097501
      [15] 王强.Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 必威体育下载 , 2010, 59(9): 6569-6574.doi:10.7498/aps.59.6569
      [16] 李晓娟, 王强.晶粒尺寸对Bi0.2Ca0.8MnO3电荷有序的影响. 必威体育下载 , 2009, 58(9): 6482-6486.doi:10.7498/aps.58.6482
      [17] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超.哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 必威体育下载 , 2009, 58(11): 7857-7863.doi:10.7498/aps.58.7857
      [18] 赵华英, 杨 欢, 马继云, 方 煦, M. Kamran, 戴耀民, 李 明, 赵柏儒, 邱祥冈.La0.33Pr0.34Ca0.33MnO3薄膜的应变效应. 必威体育下载 , 2008, 57(11): 7168-7172.doi:10.7498/aps.57.7168
      [19] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓.哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 必威体育下载 , 2008, 57(7): 4450-4455.doi:10.7498/aps.57.4450
      [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为.La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 必威体育下载 , 2001, 50(2): 319-323.doi:10.7498/aps.50.319
    计量
    • 文章访问数:8671
    • PDF下载量:228
    • 被引次数:0
    出版历程
    • 收稿日期:2021-01-15
    • 修回日期:2021-03-10
    • 上网日期:2021-07-31
    • 刊出日期:2021-08-05

      返回文章
      返回
        Baidu
        map