搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩

High field X-ray laser physics

Shen Bai-Fei, Ji Liang-Liang, Zhang Xiao-Mei, Bu Zhi-Gang, Xu Jian-Cai
PDF
HTML
导出引用
  • 相干X光, 特别是X射线自由电子激光技术的发展提供了一种新的产生超强光场的途径. 由于其较高的光子能量、高峰值功率密度与超短的脉冲长度, 有望将强场激光物理从可见光波段推进到X光波段. 目前, 基于X射线的非线性原子分子物理已取得了初步进展, 随着X射线光强的提升, 相互作用将进入相对论物理、强场量子电动力学(quantum electrodynamics, QED)物理等领域, 为激光驱动加速与辐射、QED真空、暗物质的产生与探测等带来新的科学发现机会. 本文对强场X射线激光在固体中的尾场加速、真空极化、轴子的产生与探测等方面进行介绍, 旨在阐明X射线波段强场物理在若干基础前沿与关键应用方面的独特优势, 并对未来的发展方向进行展望.
    Development of coherent X-ray source, especially X-ray free electron laser (XFEL), offers a new approach to reaching a strong X-ray field. High field laser physics will extend from optical to X-ray regime since the X-ray beam has high photon energy, high intensity and ultrashort pulse duration. Till now, nonlinear atomic physics and nonlinear molecular physics have been explored based on intense X-ray beam sources. They will extend to relativistic physics and quantum electrodynamics (QED) physics area with X-ray intensity increasing, and thus offering a new opportunity to innovatively investigate the particle acceleration and radiation, QED vacuum, dark matter generation and vacuum birefringence. This review provides an overview of the wake field acceleration, vacuum birefringence as well as axion generation and detection based on strong X-ray laser field. Intense X-ray pulse will show unique potential both in basic science and in practical applications. Finally, an outlook for the future development and perspectives of high-field X-ray physics is described. The invention of chirped pulse amplification results in the generation of the light intensity in the relativistic regime (> 10 18W/cm 2). Laser-plasma interaction in this regime motivates multiple disciplines such as laser-driven particle acceleration, laser secondary radiation sources, strong-field physics, etc. While petawatt (PW) lasers have been established in various institutions, several projects of building 10 PW or even 100 PW lasers are proposed. However, pushing the laser power to the next level (EW) confronts significant challenges. Current technology is approaching to its limit in producing large aperture size optics due to the damage threshold of optical material. Alternatively, plasma is considered as a potential medium to amplify or compress laser pulses. This requires further validation in future studies. In recent years, XFEL has made significant progress of producing high brightness light sources. Based on self-amplified spontaneous emission (SASE) or self-seeding in undulators, the XFEL provides a brightest light source up to the hard X-ray wavelength. The existing major XFEL facilities are LCLS-II in USA, EuXFEL in Europe, SACLA in Japan, Swiss FEL in Switzerland and PAL-XFEL in South Korea. In China, a new facility SHINE consisting of a high-repetition rate hard X-ray FEL and ultra-intense optical laser is under construction. After implementing the tapered undulator in XFEL, the peak power of X-ray pulses now reaches multi-terawatt. The pulses can also be compressed to an attosecond level. Following this trend, it is expected that the coherent XFEL will be able to generate a super strong light field, thus pushing strong-field physics to the X-ray regime. The relativistic threshold for 1-nm X-ray is about 10 24W/cm 2, which we believe will be achievable in the near future. Such relativistic X-ray pulses can be used to stimulate relativistic dynamics in solid materials, realizing high-gradient low-emittance particle acceleration in solids. This may open a new path towards high-energy physics, advanced light sources, fast imaging, etc. In addition, the combination of strong X-rays and ultra-intense lasers offers a new opportunity to study the light-by-light scattering in vacuum and detecting the candidate particles for dark matter. The field of strong-field X-ray physics is largely unexplored realm. In this review, we show a few key science cases brought up by high power X-rays and shed light on this important direction. The ultra-intense coherent X-ray laser with a wavelength in a range from 100 nm to less than 0.1nm can interact directly with the nanostructured materials with solid density. Benefiting from the ultra-intense field and ultra-high critical density, acceleration field with gradient of TeV/cm can be stimulated on a nanometer scale, and thus ultra-high energy particle beams can be obtained. The available nanometer material technique promotes such a development. For example, the recent research reported that high-repetition/few-attosecond high-quality electron beams can be generated from crystal driven by an intense X-ray laser. Beside electrons, ions including protons are expected to be accelerated to ultra-high energy via target normal sheath or light pressure acceleration mechanisms on a nanometer scale if the X-ray is intense enough. It should be noted that ultra-high acceleration gradient is not the unique advantage of the X-ray laser driven acceleration. A more important quality is the beam emittance that can be low enough because of the small size of the beam source. This is very significant for ultrafast microscopy to achieve a high resolution. In classical physics, photon-photon interaction is prohibited in vacuum. However, according to the QED theory, vacuum is full of quantum fluctuation, in which virtual particle-antiparticle pairs emerge and annihilate in ultra-short instants. When excited by strong fields, the vacuum fluctuation appears as a weak nonlinear medium and allows photon-photon interaction therein, which is referred to as vacuum polarization. Based on the effective field theory, the vacuum polarization can be described by Euler-Heisenberg Lagrangian density, and then classical Maxwell equations are modified. Vacuum polarization can induce some novel physical effects, including vacuum birefringence, light-by-light scattering, vacuum diffraction, etc. Up to now, none of these effects has been verified experimentally under strong fields. The XFEL is regarded as a promising probe to explore these vacuum polarization effects. In this paper, the research progress of vacuum polarization driven by strong fields is summarized, the potential detection proposal using XFEL is discussed. Dark matter is one of the puzzles in contemporary physics. Till now, we still have not known what particles constitute it. Axion is a spinless massive hypothetical boson that is proposed as the solution to strong CP problem. It is the particle beyond the standard model and has extremely weak interaction with the standard-model particle like photon, and hence there appears a significant obstacle to detecting it. Therefore, axion and axion-like-particles (ALPs) are a kind of promising candidate of dark matter. In this paper, we summarize the research progress of axions and ALP detection, including detecting the axions sources from universe, the production and detection of artificial axions and ALPs. It is shown that the XFEL is a potential tool for detecting the artificial axions and ALPs under strong electromagnetic fields. The XFEL provides a coherent ultrafast X-ray beam for exploring particle acceleration and radiation, QED vacuum, dark matter generation, vacuum birefringence, etc. The probing of these dynamics requires different X-ray diagnoses, including the measurement of polarization purity, spectrum, pulse duration and focal condition. The X-ray polarization purity has been improved to a 10 -10level by using 6 reflections based on channel-cut silicon crystal and it will efficiently probe the vacuum birefringence. The pulse duration of isolated X-ray pulse in FEL reaches as short as 200 as, which allows probing ultrafast electron dynamics. A new self-seeding scheme using the Bragg reflection in SACLA is developed to obtain a narrow spectrum of 3 eV, 10 times smaller than that in the current SASE scheme. Therefore, the fast development of X-ray diagnostics will finely characterize X-ray beam itself and offer a unique tool for understanding the underlying phenomena for different applications. The peak intensity of coherent X-ray beam will reach to a relativistic level in future. A possible way is CPA technology, which is well developed in intense near-infrared laser system and may produce an ultrahigh intense attosecond X-ray pulse. High field X-ray laser physics will offer new opportunities both for basic science and for revolutionary application.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

    • [1] 张东荷雨, 刘金宝, 付洋洋.激光维持等离子体多物理场耦合模型与仿真. 必威体育下载 , 2024, 73(2): 025201.doi:10.7498/aps.73.20231056
      [2] 尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁.高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究. 必威体育下载 , 2024, 73(9): 095202.doi:10.7498/aps.73.20231625
      [3] 吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新.超强激光驱动的辐射反作用力效应与极化粒子加速. 必威体育下载 , 2021, 70(8): 085203.doi:10.7498/aps.70.20210091
      [4] 周英, 谢双媛, 许静平.磁-腔量子电动力学系统中压缩驱动导致的两体与三体纠缠. 必威体育下载 , 2020, 69(22): 220301.doi:10.7498/aps.69.20200838
      [5] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇.硬X射线调制望远镜低能探测器量子效率标定. 必威体育下载 , 2017, 66(11): 112901.doi:10.7498/aps.66.112901
      [6] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋.激光高能X射线成像中探测器表征与电子影响研究. 必威体育下载 , 2017, 66(24): 245201.doi:10.7498/aps.66.245201
      [7] 张春艳, 刘显明.氢团簇在飞秒强激光场中的动力学行为. 必威体育下载 , 2015, 64(16): 163601.doi:10.7498/aps.64.163601
      [8] 朱卫卫, 张秋菊, 张延惠, 焦扬.电子在激光驻波场中运动产生的太赫兹及X射线辐射研究. 必威体育下载 , 2015, 64(12): 124104.doi:10.7498/aps.64.124104
      [9] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才.强耦合腔量子电动力学中单原子转移的实验及模拟. 必威体育下载 , 2014, 63(24): 244205.doi:10.7498/aps.63.244205
      [10] 贾倩倩, 王伟民, 董全力, 盛政明.超短强激光与固体薄膜靶作用产生keV相干X射线数值模拟研究. 必威体育下载 , 2012, 61(1): 015203.doi:10.7498/aps.61.015203
      [11] 陈翔, 米贤武.量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 必威体育下载 , 2011, 60(4): 044202.doi:10.7498/aps.60.044202
      [12] 张霖, 张淳民, 简小华.高层大气风场洛伦兹光谱线型粒子辐射率探测研究. 必威体育下载 , 2010, 59(2): 899-906.doi:10.7498/aps.59.899
      [13] 董晓刚, 盛政明, 陈 民, 张 杰.强激光与固体靶作用产生的表面电子加速和辐射研究. 必威体育下载 , 2008, 57(12): 7423-7429.doi:10.7498/aps.57.7423
      [14] 王 智, 陈佳洱, 颜学庆, 陆元荣, 方家驯, 郭之虞.分离作用射频四极场加速器中动力学参数与极限流强的探讨. 必威体育下载 , 2006, 55(12): 6298-6301.doi:10.7498/aps.55.6298
      [15] 刘 辽, 裴寿镛.量子史瓦茨黑洞和暗物质. 必威体育下载 , 2006, 55(9): 4980-4982.doi:10.7498/aps.55.4980
      [16] 余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭.高阶阈值上电离的量子电动力学理论. 必威体育下载 , 2005, 54(8): 3542-3547.doi:10.7498/aps.54.3542
      [17] 张杰, 王薇.数值模拟辐射场对激光等离子体中物理过程的影响. 必威体育下载 , 2001, 50(8): 1517-1520.doi:10.7498/aps.50.1517
      [18] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭.硅量子点中电子的荷电动力学特征. 必威体育下载 , 2000, 49(10): 2037-2040.doi:10.7498/aps.49.2037
      [19] 刘 辽.时空泡沫结构与量子电动力学中发散的消除. 必威体育下载 , 1998, 47(3): 363-367.doi:10.7498/aps.47.363
      [20] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生.同步辐射软X射线源用于软X射线探测元件定标. 必威体育下载 , 1997, 46(4): 650-655.doi:10.7498/aps.46.650
    计量
    • 文章访问数:8896
    • PDF下载量:403
    • 被引次数:0
    出版历程
    • 收稿日期:2021-01-15
    • 修回日期:2021-02-10
    • 上网日期:2021-04-12
    • 刊出日期:2021-04-20

      返回文章
      返回
        Baidu
        map