搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

肖寒, 弭孟娟, 王以林

Recent development in two-dimensional magnetic materials and multi-field control of magnetism

Xiao Han, Mi Meng-Juan, Wang Yi-Lin
PDF
HTML
导出引用
  • 二维磁性材料是二维材料家族的新成员, 其在单原胞层厚度依然保持长程磁序且易受外场调控, 这为二维极限下的磁性以及其他新奇物理效应的研究提供了理想的平台, 又为低功耗自旋电子学/磁存储器件的研制开辟了新的途径, 成为国际上备受关注的前沿热点. 本综述首先系统介绍了近年来发现的各类本征二维磁性材料的晶体结构、磁结构以及磁性能, 并讨论了由磁场、电场、静电掺杂、离子插层、堆叠方式、应变、界面等外场调控二维磁性材料磁性能的研究进展, 最后进行总结并展望了二维磁性材料未来发展的研究方向. 深入理解二维磁性材料磁性的起源和机理、研究其磁性能与微观结构之间的关联, 为寻找具有更高居里温度(奈尔温度)的磁性材料、设计多功能的新概念器件具有重要意义.
    The recently discovered two-dimensional magnetic materials have attracted tremendous attention and become a cutting-edge research topic due to their long-range magnetic ordering at a single-unit-cell thickness, which not only provide an ideal platform for studying the magnetism in the two-dimensional limit and other novel physical effects, but also open up a new way to develop low-power spintronics/magnetic storage devices. In this review, first, we introduce the crystal structures, magnetic structures and magnetic properties of various recently discovered intrinsic two-dimensional magnetic materials. Second, we discuss the research progress of controlling the magnetic properties of two-dimensional magnetic materials by magnetic field, electric field, electrostatic doping, ion intercalation, stacking, strain, interface, etc. Finally, we give a perspective of possible research directions of the two-dimensional magnetic materials. We believe that an in-depth understanding of the origin and mechanism of magnetism of the two-dimensional magnetic materials as well as the study of the relationship between magnetic properties and microstructures are of great significance in exploring a magnetic material with a substantially high Curie temperature (Néel temperature), and designing multifunctional new concept devices.
        通信作者:王以林,yilinwang@email.sdu.edu.cn
      • 基金项目:国家自然科学基金重大研究计划(批准号: 92065206)和山东省自然科学基金(批准号: ZR2020MA071)资助的课题
        Corresponding author:Wang Yi-Lin,yilinwang@email.sdu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 92065206) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA071)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

    • 材料类别 材料 磁耦合 磁转变温度TN/Tc 描述模型 带隙/eV 参考文献
      过渡金属
      卤化物
      CrCl3 A-type AFM 1L: 10 K/Tc
      2L: 16 K/TN
      Bulk: 17 K/TN
      //XY 3.0 [44,46,47]
      CrBr3 FM 1L: 27 K/Tc
      2L: 36 K/Tc
      Bulk: 37 K/Tc
      ⊥between Isingand Heisenberg 2.2 [44,45,47]
      CrI3 A-type AFM/Few L 1L: 45 K/Tc
      2L: 45 K/TN
      Few L: 46 K/TN
      ⊥Ising 1.2 [44,45,47,48]
      FM/Bulk Bulk: 61 K/Tc
      1T-FeCl2 A-type AFM/Bulk Bulk: 24 K/TN [44]
      FM/1L 1L: 109 K/Tc ⊥Heisenberg Semimetal [55]
      1T-FeBr2 A-type AFM/Bulk Bulk: 14 K/TN [44]
      FM/1L 1L: 81 K/Tc ⊥Heisenberg Semimetal [55]
      1T-FeI2 Intralayer AF-stripy/Bulk Bulk: 9 K/TN [44]
      FM/1L 1L: 42 K/Tc ⊥Heisenberg Semimetal [55]
      1T-CoCl2 AFM/Bulk Bulk: 25 K/TN // [44]
      FM/1L 1L: 85 K/Tc Heisenberg [55]
      1T-CoBr2 A-type AFM/Bulk Bulk: 19 K/TN // [44]
      FM/1L 1L: 23 K/Tc Heisenberg [55]
      1T-CoI2 AFM Bulk: 11 K/TN [44]
      NiI2 A-type AFM 2.0 nm: 35 K/TN
      Bulk: 75 K/TN
      1.11/1L
      1.23/Bulk
      [29]
      过渡金属
      硫化物
      CrSe# FM Bulk: 280 K/Tc [21]
      CrTe2# FM Bulk: 310 K/Tc 0 [97]
      CrTe FM 11 nm: 140 K/Tc
      45 nm: 205 K/Tc
      0 [19]
      Cr2Te3 FM 5 nm: 280 K/Tc
      40.3 nm: 170 K/Tc
      0 [57]
      FeTe (hexagonal) FM 4 nm: 170 K/Tc
      Bulk: 220 K/Tc
      Heisenberg [20]
      ${\rm MnSe}_x{}^*$ FM/1L 1L: > 300 K/Tc 3.39 [61]
      AFM/Bulk
      1T-VSe2* FM/1L 1L: > 300 K (470 K)/Tc // 0 [22,60]
      2H-VSe2 A-type AFM // Semimetal [98]
      V5S8 FM/3.2 nm 3.2 nm: 2 K/Tc 0 [99]
      AFM/Bulk Bulk: 32 K/TN
      FeTe (tetragonal) AFM-Néel 5 nm: 45 K/TN
      Bulk: 70 K/TN
      Heisenberg [20]
      Cr2S3 FM 15 nm: 120 K/Tc
      45 nm: 300 K/Tc
      [59]
      Cr2O3# AFM Bulk: 307 K/TN 3.5 [100,101]
      过渡金属磷
      化合物
      FePS3 Intralayer AF-zigzag, interlayer FM 1L: 118 K/TN
      Bulk: 118 K/TN
      ⊥Ising 1.5 [30,65,72]
      NiPS3 Intralayer AF-zigzag, interlayer FM 2L: 130 K/TN
      Bulk: 150 K/TN
      // XY 1.6 [31,65,67]
      MnPS3 Intralayer AF-Néel, interlayer FM Bulk: 78 K/TN // Heisenberg 2.4 [65,68,71]
      CoPS3 Intralayer AF-zigzag, interlayer FM Bulk: 120 K/TN // XY [66]
      MnPSe3 Intralayer AF-zigzag, interlayer FM 5L: 70 K/TN
      Bulk: 70 K/TN
      // XY 2.3 [32]
      FePSe3# Intralayer AF-zigzag, interlayer FM Bulk: 119 K/TN ⊥Ising 1.3 [73,74]
      CrPS4 A-type AFM Bulk: 36 K/TN 1.3 [75,76,102]
      FM/1L 1L: 50 K/Tc 2.28 [77]
      过渡金属锗
      碲化合物
      Cr2Si2Te6 FM 1L: 80 K/Tc
      Bulk: 31 K/Tc
      ⊥Ising 1.2 [80,81,103]
      Cr2Ge2Te6 FM 2L: 28 K/Tc
      3L: 35 K/Tc
      Bulk: 61 K/Tc
      ⊥Heisenberg 0.45 [17,80]
      Fe3GeTe2 FM 1L (onAl2O3): 20 K/Tc
      1L (on Au): 130 K/Tc
      Bulk: 220—230 K/Tc
      ⊥Ising 0 [38,82]
      Fe5GeTe2 FM 12 nm: 270—300 K/Tc
      Bulk: 310 K/Tc
      0 [26]
      过渡金属铋
      碲化合物
      MnBi2Te4 A-type AFM 3SL: 18 K/TN
      4SL: 21 K/TN
      Bulk: 25 K/TN
      ⊥Heisenberg [84,85]
      MnBi4Te7 A-type AFM Bulk: 13 K/TN [89]
      MnBi6Te10 A-type AFM Bulk: 11 K/TN [89]
      VBi2Te4 A-type AFM // [90,104]
      NiBi2Te4 A-type AFM // [90]
      EuBi2Te4 A-type AFM // [90]
      过渡金属氧
      卤化物
      FeOCl AFM 2.0—2.4 nm: 14 K/TN
      Bulk: 84—92 K/TN
      [34]
      CrOCl FM/1L 1L: 160 K/Tc ⊥Ising 2.38 [91]
      AFM Bulk: 13.5 K/TN 2.31 [96]
      CrSBr FM/1L 1L: 160 K/Tc //Heisenberg 0.757 [93]
      CrSCl FM/1L 1L: 150 K/Tc // Heisenberg 0.856 [93]
      CrSI FM/1L 1L: 170 K/Tc // Heisenberg 0.473 [93]
      注: 绿色背底表示为实验中发现的铁磁材料, 橙色背底表示为实验中发现的反铁磁材料, 灰色背底表示为理论预测的铁磁或反铁磁材料; 上标#为体相材料, 其单层磁性在实验中还未发现; 上标*为磁性是否为本征磁性尚未确定的磁性材料; ⊥表示易磁化轴垂直于平面(ab), ∥表示易磁化轴平行于平面(ab).
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

    • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红.二维钒掺杂Cr2S3纳米片的生长与磁性研究. 必威体育下载 , 2024, 0(0): 0-0.doi:10.7498/aps.73.20231229
      [2] 张颖, 李卓霖, 沈保根.磁畴壁拓扑结构研究进展. 必威体育下载 , 2024, 73(1): 017504.doi:10.7498/aps.73.20231612
      [3] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒.基于二维磁性材料的自旋轨道力矩研究进展. 必威体育下载 , 2024, 73(1): 017502.doi:10.7498/aps.73.20231244
      [4] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林.有机阳离子插层调控二维反铁磁MPX3磁性能. 必威体育下载 , 2024, 73(5): 057501.doi:10.7498/aps.73.20232010
      [5] 常超, 寇金宗, 徐小志.原子台阶调控二维单晶材料生长. 必威体育下载 , 2023, 72(20): 208101.doi:10.7498/aps.72.20230887
      [6] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红.二维钒掺杂Cr2S3纳米片的生长与磁性研究. 必威体育下载 , 2023, 72(24): 247501.doi:10.7498/aps.72.20231229
      [7] 张建强, 秦彦军, 方峥, 范晓珍, 马云, 李文忠, 杨慧雅, 邝富丽, 翟耀, 师应龙, 党文强, 叶慧群, 方允樟.多场耦合Fe基合金巨磁阻抗效应调控机制. 必威体育下载 , 2022, 71(23): 237501.doi:10.7498/aps.71.20221376
      [8] 刘南舒, 王聪, 季威.磁性二维材料的近期研究进展. 必威体育下载 , 2022, 71(12): 127504.doi:10.7498/aps.71.20220301
      [9] .二维磁性材料专题编者按. 必威体育下载 , 2021, 70(12): 120101.doi:10.7498/aps.70.120101
      [10] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国.霍尔天平材料的多场调控. 必威体育下载 , 2021, 70(4): 048501.doi:10.7498/aps.70.20201799
      [11] 易恩魁, 王彬, 沈韩, 沈冰.轴子拓扑绝缘体候选材料层状 ${\bf{Eu}}_{ 1- x}{\bf{Ca}}_{ x}{\bf{In}}_{\bf2}{\bf{As}}_{\bf2}$ 的物性研究. 必威体育下载 , 2021, 70(12): 127502.doi:10.7498/aps.70.20210042
      [12] 张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇.二维CrI3晶体的磁性测量与调控. 必威体育下载 , 2021, 70(12): 127504.doi:10.7498/aps.70.20202197
      [13] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜.大面积二维磁性材料的制备及居里温度调控. 必威体育下载 , 2021, 70(12): 127301.doi:10.7498/aps.70.20210223
      [14] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳.二维磁性材料的物性研究及性能调控. 必威体育下载 , 2021, 70(12): 127801.doi:10.7498/aps.70.20202146
      [15] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国.磁性斯格明子的多场调控研究. 必威体育下载 , 2018, 67(13): 137507.doi:10.7498/aps.67.20180931
      [16] 齐伟华, 李壮志, 马丽, 唐贵德, 吴光恒, 胡凤霞.磁性材料磁有序的分子场来源. 必威体育下载 , 2017, 66(6): 067501.doi:10.7498/aps.66.067501
      [17] 张志东.磁性材料的磁结构、磁畴结构和拓扑磁结构. 必威体育下载 , 2015, 64(6): 067503.doi:10.7498/aps.64.067503
      [18] 张燕如, 张琳, 任俊峰, 原晓波, 胡贵超.Gd掺杂ZnO纳米线磁耦合性质的第一性原理研究. 必威体育下载 , 2015, 64(17): 178103.doi:10.7498/aps.64.178103
      [19] 张 浩, 赵建林, 张晓娟, 底 楠.二维磁性光子晶体及其模场分析. 必威体育下载 , 2007, 56(6): 3546-3552.doi:10.7498/aps.56.3546
      [20] 魏国柱, 陈凌孚.二维磁性合金的RKKY耦合电阻. 必威体育下载 , 1986, 35(5): 681-686.doi:10.7498/aps.35.681
    计量
    • 文章访问数:24840
    • PDF下载量:2261
    • 被引次数:0
    出版历程
    • 收稿日期:2020-12-24
    • 修回日期:2021-01-30
    • 上网日期:2021-06-17
    • 刊出日期:2021-06-20

      返回文章
      返回
        Baidu
        map