搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

高静怡, 孙嘉兴, 王逊, 周刚, 王皞, 刘艳侠, 徐东生

Development of Finnis-Sinclair potential of metal Nb and the influence of potential function form on the properties of material

Gao Jing-Yi, Sun Jia-Xing, Wang Xun, Zhou Gang, Wang Hao, Liu Yan-Xia, Xu Dong-Sheng
PDF
HTML
导出引用
  • 对于计算材料科学的研究者来说, 经常由于找不到合适的原子间势而工作受阻. 本文将在Finnis-Sinclair势的框架下, 通过开发金属Nb的Finnis-Sinclair势而给出较详细的原子间势拟合、检验、修正的过程. 首先建立原子间势与材料宏观性能之间的关系, 然后通过再现金属Nb的结合能、体模量、表面能、空位形成能及平衡点阵常数的实验数据的方法拟合金属Nb的Finnis-Sinclair势. 利用所构建的原子间势计算金属Nb的弹性常数、剪切模量及柯西压力来检验势函数. 讨论势函数曲线形状对间隙形成能的影响, 进而根据间隙能的计算数据修正已构建的原子间势. 讨论截断距离的处理方法. 本文的结果一方面为构建原子间势函数库提供资料, 为构建与Nb相关的合金原子间势奠定基础; 另一方面, 为开发和改善原子间势质量提供方法和依据.
    Researchers’ work on computational materials is often hampered by the lack of suitable intera tomic potentials. In this paper, under the framework of Finnis-Sinclair (FS) potentials, the process of fitting, testing and correction of interatomic potential is given in detail by developing the FS potential for metal Nb. First, the relationship between the interatomic potential and the macroscopic properties of the material is established. Then, the Finnis-Sinclair potential of metal Nb is fitted by reproducing the experimental data, such as the cohesive energy, bulk modulus, surface energy, vacancy formation energy and equilibrium lattice constant, and the fitting mean square error is less than 10 –7. In order to test the interatomic potential, the elastic constant, shear modulus and Cauchy pressure of metal Nb are calculated by the constructed interatomic potential. In addition, how the form of the interatomic potential function affects the interstitial performance is discussed, and the constructed interatomic potential is modified according to the results of density functional theory (DFT) of the interstitial formation energy. The treatment of cutoff distance is also discussed. In the paper, the results are as follows. 1) The original form of FS potential is not suitable for extending the atomic interaction to the third nearest neighbor. Through analysis and test, it is found that when the modified electron density function is in the form of the fourth power and the form of the pair potential function is in the form of the sixth power polynomial, the interatomic potential can better describe the interatomic interaction; 2) The result of interstitial formation energy is taken as the target value to modify the behavior of the pair potential function in the near distance, and the modified interatomic potential gives the interstitial formation energy close to the result of DFT. When the interstitial energy calculated by the interatomic potential is larger than the target value, the pair potential curve of near distance will be softened by the superposition of a polynomial term, otherwise, the pair potential curve will be stiffened; 3) When the physical quantity under equilibrium state is used as the fitting data, the fitted potential parameters and the elastic constant results will not be affected, while adjusting the curve form of the potential function, as long as none of the function value, the slope and the curvature of the function curve is changed at each neighbor position. The magnitude of interstitial energy will be affected by changing the shape of the curve that is less than the first neighbor range; 4) Under the cutoff strategy in this paper, changing the cutoff distance has almost no influence on the calculated results of potential parameters or crystal properties, but has a slight influence on the mean square error of the fitting results. The results of this paper provide some information for the construction of interatomic potentials database, and lay a foundation for constructing the Nb-related interatomic potential of alloy. And it also provides a method and basis for developing and improving the quality of interatomic potential.
        通信作者:刘艳侠,ldlyx@163.com
      • 基金项目:国家重点研发计划 (批准号: 2016YFB0701304) 资助的课题.
        Corresponding author:Liu Yan-Xia,ldlyx@163.com
      • Funds:Project supported by the National Key Research & Development Program of China (Grant No. 2016YFB0701304)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

    • 间隙构型 距离及等价原子数
      挤列子 距离 $\dfrac{ {\sqrt 3 } }{ {4} }{a }$ $\dfrac{{\sqrt 11 }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{19}}} }}{{4}}{\rm{a}}$ $\dfrac{{\sqrt {{\rm{27}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{35}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{43}}} }}{{4}}{a}$
      原子数 2 6 6 8 12 6
      八面体 距离 $\dfrac{1}{2}{a}$ $\dfrac{{\sqrt 2 }}{2}{a}$ $\dfrac{{\sqrt {\rm{5}} }}{2}{a}$ $\dfrac{{\sqrt 6 }}{2}{a}$ $\dfrac{3}{2}{a}$
      原子数 2 4 8 8 10
      四面体 距离 $\dfrac{{\sqrt {\rm{5}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{13}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{21}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{29}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{37}}} }}{{4}}{a}$
      原子数 4 4 8 12 4
      下载: 导出CSV

      数值 a Ec/eV B/(1011Pa) Eγ100/
      (mJ·m–2)
      $E_{\rm{v}}^{\rm{f}}$/eV
      实验值 3.3008 7.57 1.710 2046 2.64
      本文计
      算值
      3.3008 7.57 1.710 2050 2.64
      下载: 导出CSV

      均方差/10–8 c0 c1 c2 A/eV
      无修
      正项
      6.63447 0.262198 –0.138974 0.0184461 0.636219
      带修
      正项
      6.63447 0.262198 –0.138974 0.0184461 0.636219
      下载: 导出CSV

      C44 C11 C12 $C' $ Pc
      实验值[2] 0.281 2.466 1.332 0.546 0.5255
      本文结果 0.567 2.343 1.393 0.475 0.4134
      下载: 导出CSV

      FS[21] FS(87)[22] FS(87)未驰豫 DFT[24] DFT[25] 本文无修正项 本文有修正项
      Cutoff c 4.2 4.2 4.2 5.31261 5.31261
      d 3.915354 3.915354 3.915354 5.0709 5.0709
      $ \left\langle {111} \right\rangle $ crow 4.857 4.10 9.037 5.254 5.255 15.487 6.977
      $ \left\langle {111} \right\rangle $ dum 4.795 6.610 5.253 5.203 10.749 7.775
      $ \left\langle {110} \right\rangle $ dum 4.482 3.99 5.930 5.597 5.684 7.148 4.425
      $ \left\langle {100} \right\rangle $ dum 4.821 4.13 8.385 5.949 6.005 13.844 7.616
      Tetrahedral 4.26 6.893 5.758 5.733 10.659 6.371
      Octahedral 4.23 6.850 6.060 6.009 11.069 6.659
      下载: 导出CSV

      函数形式 (35), (36)式 (35), (6)式 (5), (6)式 (5), (32), (33)式 (5), (32), (34)式
      c0 –20.2072 –14.0543 0.262198 0.262198 0.262198
      c1 15.4683 11.0332 –0.138974 –0.138974 –0.138974
      c2 –2.81702 –2.04351 0.0184461 0.0184461 0.0184461
      A 1.28710 0.636966 0.636219 0.636219 0.636219
      下载: 导出CSV

      函数形式 (35), (36)式 (35), (6)式 (5), (6)式 (5), (32), (33)式 (5), (32), (34)式
      C11 8.19854 2.05366 2.34302 2.34302 2.34302
      C12 –2.88593 1.53817 1.39349 1.39349 1.39349
      $C' $ 5.54235 0.257745 0.474767 0.474767 0.474767
      C44 –3.20776 1.21374 0.56664 0.56664 0.56664
      Pc 0.160915 0.162217 0.413424 0.413424 0.413424
      Octahedral –75.9256 14.5432 11.0693 7.9909 6.65925
      Tetrahedral –80.0616 13.9223 10.6593 7.53737 6.37076
      $ \left\langle {111} \right\rangle $ crow –89.9140 20.9320 15.4871 11.0992 6.97688
      $ \left\langle {100} \right\rangle $ dum –947.486 15.2250 13.8439 9.57021 7.61644
      $ \left\langle {110} \right\rangle $ dum –954.052 5.00180 7.14750 4.56348 4.42502
      $ \left\langle {111} \right\rangle $ dum 72.3004 17.9239 10.7490 8.12406 7.77466
      下载: 导出CSV

      截断距离 x= 0.55 x= 0.70 x= 0.80
      均方差 1.9669 × 10–7 1.3307 × 10–7 6.6345 × 10–8
      B 1.06741 1.06742 1.06742
      ${\gamma _{100}}$ 0.128159 0.12808 0.12808
      $E_{\rm{v}}^{\rm{f}}$ 2.63998 2.63999 2.63999
      ${E_C}$ 7.57 7.57 7.57
      C11 2.33551 2.34081 2.34302
      C12 1.39724 1.3946 1.39349
      $C' $ 0.469137 0.473105 0.474767
      C44 0.570392 0.567749 0.56664
      Pc 0.413424 0.413424 0.413424
      Octahedral 6.93421 6.76073 6.65925
      Tetrahedral 6.62507 6.46365 6.37076
      $ \left\langle {111} \right\rangle $ crow 7.45171 7.15594 6.97688
      $ \left\langle {100} \right\rangle $ dum 8.30897 7.90098 7.61644
      $ \left\langle {110} \right\rangle $ dum 4.80878 4.59369 4.42502
      $ \left\langle {111} \right\rangle $ dum 8.06717 7.89704 7.77466
      下载: 导出CSV

      截断距离 y= 0.45 y= 0.50 y= 0.60
      均方差 1.57065 × 10–7 6.6345 × 10–8 1.08929 × 10–10
      B 1.06742 1.06742 1.06742
      ${\gamma _{100}}$ 0.128111 0.12808 0.127726
      $E_{\rm{v}}^{\rm{f}}$ 2.63999 2.63999 2.64000
      ${E_{\rm{C}}}$ 7.57 7.57 7.57
      C11 2.35341 2.34302 2.32299
      C12 1.38830 1.39349 1.40351
      $c'$ 0.482555 0.474767 0.45974
      C44 0.533568 0.56664 0.627336
      Pc 0.427366 0.413424 0.388087
      Octahedral 6.42699 6.65925 7.07134
      Tetrahedral 6.14925 6.37076 6.76314
      $ \left\langle {111} \right\rangle $ crow 6.63230 6.97688 7.59196
      $ \left\langle {100} \right\rangle $ dum 7.50874 7.61644 7.80542
      $ \left\langle {110} \right\rangle $ dum 4.53049 4.42502 4.23158
      $111 $ dum 7.28896 7.77466 9.07468
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

    • [1] 田晓林, 赵宇宏, 田晋忠, 侯华.原子间相互作用势对中Al浓度Ni75AlxV25-x合金沉淀序列的影响. 必威体育下载 , 2018, 67(23): 230201.doi:10.7498/aps.67.20181366
      [2] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭.Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 必威体育下载 , 2017, 66(19): 196101.doi:10.7498/aps.66.196101
      [3] 刘艳, 贾成, 郭福明, 杨玉军.势函数对强激光辐照下原子高次谐波辐射的影响. 必威体育下载 , 2016, 65(3): 033201.doi:10.7498/aps.65.033201
      [4] 孙素蓉, 王海兴.惰性气体原子间相互作用势比较研究. 必威体育下载 , 2015, 64(14): 143401.doi:10.7498/aps.64.143401
      [5] 长龙, 菅永军.平行板微管道间Maxwell流体的高Zeta势周期电渗流动. 必威体育下载 , 2012, 61(12): 124702.doi:10.7498/aps.61.124702
      [6] 饶建平, 欧阳楚英, 雷敏生, 江风益.第一性原理计算研究金属Nb和间隙氢原子的相互作用. 必威体育下载 , 2012, 61(4): 047105.doi:10.7498/aps.61.047105
      [7] 吴洋, 段海明.采用Lennard-Jones原子间势研究(C60)N分子团簇的结构演化行为. 必威体育下载 , 2011, 60(7): 076102.doi:10.7498/aps.60.076102
      [8] 王召柯, 吴永全, 沈通, 刘益虎, 蒋国昌.Zn-Mg合金的长程Finnis-Sinclair势. 必威体育下载 , 2011, 60(8): 086105.doi:10.7498/aps.60.086105
      [9] 吴红丽, 赵新青, 宫声凯.Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 必威体育下载 , 2010, 59(1): 515-520.doi:10.7498/aps.59.515
      [10] 李会山, 李鹏程, 周效信.强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 必威体育下载 , 2009, 58(11): 7633-7639.doi:10.7498/aps.58.7633
      [11] 胡志刚, 刘益虎, 吴永全, 沈通, 王召柯.用于α-Al2O3分子动力学模拟的长程Finnis-Sinclair势函数. 必威体育下载 , 2009, 58(11): 7838-7844.doi:10.7498/aps.58.7838
      [12] 刘艳侠, 王 逊, 马永庆, 张程华.Fe-Cr-V-Ni-Si-C系多元合金的原子间互作用势的构建及应用. 必威体育下载 , 2008, 57(1): 358-363.doi:10.7498/aps.57.358
      [13] 贾洪祥, 孟续军.一种含势阱具有混合交换势形式的平均原子模型. 必威体育下载 , 2005, 54(1): 70-77.doi:10.7498/aps.54.70
      [14] 孙久勋.严格可解四参数双原子分子势函数. 必威体育下载 , 1999, 48(11): 1992-1998.doi:10.7498/aps.48.1992
      [15] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同.碱土氟化物中离子间相互作用势经验参数的确定. 必威体育下载 , 1998, 47(11): 1811-1817.doi:10.7498/aps.47.1811
      [16] 孙久勋, 章立源.两个严格可解的双原子分子势函数. 必威体育下载 , 1996, 45(12): 1953-1959.doi:10.7498/aps.45.1953
      [17] 杨德清.计算金属原子半径和动函数的新方法. 必威体育下载 , 1994, 43(9): 1507-1516.doi:10.7498/aps.43.1507
      [18] 陈金玉, 丁鄂江.具有不同作用势的两平行墙间流体的浸润相变. 必威体育下载 , 1993, 42(8): 1278-1289.doi:10.7498/aps.42.1278
      [19] 李树山, 林光海.用赝势方法计算简单金属的弹性常数. 必威体育下载 , 1982, 31(1): 38-49.doi:10.7498/aps.31.38
      [20] 杨正举.体心立方金属中间隙杂质原子组态的弹性研究——Ⅱ.间隙杂质原子间的相互作用能及其有序化. 必威体育下载 , 1966, 22(3): 294-303.doi:10.7498/aps.22.294
    计量
    • 文章访问数:5738
    • PDF下载量:138
    • 被引次数:0
    出版历程
    • 收稿日期:2020-12-21
    • 修回日期:2021-01-27
    • 上网日期:2021-05-29
    • 刊出日期:2021-06-05

      返回文章
      返回
        Baidu
        map