\begin{document}$1\;{\rm{Oe}} = \dfrac{{{{10}^3}}}{{4{\rm{\pi }}}}{\rm{A}}/{\rm{m}}$\end{document}). 未掺杂CdS的铁磁性很弱, 而Cr掺杂CdS的铁磁性较强. CdS纳米片(Cr原子百分比分别为0, 1.84%和2.12%)的饱和磁化Ms分别为0.854 × 10–3, 2.351 × 10–3和7.525 × 10–3 emu/g, 矫顽力Hc 为74.631, 114.372和64.349 Oe. 实验结果表明, 在室温下, Cr掺杂ZnS具有铁磁性, 这与第一性原理计算的Cr掺杂ZnS的铁磁性结果一致. Cr掺杂CdS的铁磁性起源与CdS晶格中Cr的掺杂有关."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    张珠峰, 任银拴

    Preparation and magnetic properties of chromium doped zinc sulfide and cadmium sulfide nanostructures by solvothermal method

    Zhang Zhu-Feng, Ren Yin-Shuan
    PDF
    HTML
    导出引用
    • 以乙醇胺和乙二胺为混合溶剂, 通过简单溶剂热法, 用S, ZnO和CdO为源, 成功制备了不同量Cr掺杂ZnS和CdS半导体纳米结构. X-射线衍射测试表明, 纳米结构ZnS和CdS具有纤锌矿结构. 扫描电子显微镜给出了不同铬含量的ZnS和CdS的形貌. 用电子能量散射谱观察到产物的成分为Cr, Zn, Cd和S. 振动样品磁强计测量表明, Cr掺杂的ZnS在室温下表现出铁磁性, 而未掺杂的ZnS在室温下表现出抗磁性. 掺杂的ZnS纳米片(Cr原子百分比为4.31%和7.25%)饱和磁化 M s分别为2.314 × 10 –3和5.683 × 10 –3emu/g (1 emu/g = 10 –3A·m 2/g), 矫顽力 H c为54.721, 和88.441 Oe ( $1\;{\rm{Oe}} = \dfrac{{{{10}^3}}}{{4{\rm{\pi }}}}{\rm{A}}/{\rm{m}}$ ). 未掺杂CdS的铁磁性很弱, 而Cr掺杂CdS的铁磁性较强. CdS纳米片(Cr原子百分比分别为0, 1.84%和2.12%)的饱和磁化 M s分别为0.854 × 10 –3, 2.351 × 10 –3和7.525 × 10 –3emu/g, 矫顽力 H c为74.631, 114.372和64.349 Oe. 实验结果表明, 在室温下, Cr掺杂ZnS具有铁磁性, 这与第一性原理计算的Cr掺杂ZnS的铁磁性结果一致. Cr掺杂CdS的铁磁性起源与CdS晶格中Cr的掺杂有关.
      With the continuous development of nanotechnology, people have higher and higher requirements for the performances of nanomaterials. In the past few decades, researchers have used various methods to prepare nanomaterials with different dopants, and studied their optical and electrical properties. Nanomaterials with ferromagnetic properties have a wide range of applications, and there have been many reports about the ferromagnetic properties of doped magnetic elements. However, there have been few reports about Cr-doped ZnS and CdS. In order to obtain Cr-doped ZnS and CdS nanosheets with room temperature ferromagnetism, in this paper, using ethanolamine (EA) and ethylenediamine (EN) as mixed solvents, ZnS and CdS semiconductor nanostructures doped with different amounts of chromium are successfully prepared in S, ZnO and CdO sources by simple solvent thermal method. The X-ray diffraction (XRD) measurements show that the ZnS and CdS nanostructure have a wurtzite structure. Scanning electron microscopy (SEM) images show the morphologies of ZnS and CdS with different chromium content. When the content of Cr is 4.31 at% or 7.25 at%, the thickness of Cr-doped ZnS nanosheets is about 210–290 nm, and the morphology of undoped ZnS is composed of sub-morphologies of relatively thick nanosheets. The morphologies of CdS doped with different amounts of Cr are composed of sub-morphologies of snowflake like nanosheets with thickness of about 120–190 nm. Energy dispersive spectrometer (EDS) is used to observe the product composed of Cr, Zn, Cd, and S. The EDS measurement and calculation of the Cr content in Cr-doped ZnS nanosheets are 4.31 at% and 7.25 at% respectively, and those of the Cr content in Cr-doped CdS nanosheets are 1.84 at% and 2.12 at%. The vibration sample magnetometer(VSM) measurements show that ZnS doped with chromium exhibits ferromagnetism at room temperature, while the undoped ZnS exhibits diamagnetism at room temperature. The values of saturation magnetization M s of Cr-doped ZnS nanosheets with Cr = 4.31 at% and 7.25 at% are 2.314 and 5.683 (10 –3emu/g), and the coercivity values of H c are 54.721 and 88.441 Oe, respectively. The ferromagnetism of pure CdS is weak, while that of Cr-doped CdS is enhanced at room temperature. The saturation magnetization M s values of Cr-doped CdS nanosheets with Cr = 0, 1.84 at% and 2.12 at% are 0.854, 2.351 and 7.525(10 –3emu/g), respectively, and the coercivity values of H c are 74.631, 114.372 and 64.349 Oe, respectively. The values of saturation magnetization of ZnS and CdS increases with the Cr doping increasing. The ferromagnetism of Cr-doped ZnS at room temperature is confirmed by the experimental result, which is consistent with the ferromagnetism of Cr-doped ZnS calculated by the first principle. The origin of ferromagnetism of Cr-doped CdS is related to the doping of Cr in CdS lattice.
          通信作者:任银拴,renyinshuan319@163.com
        • 基金项目:贵州省科技厅(批准号: 黔科基础[2020]1Y208)、贵州省教育厅(批准号: 黔合KY字[2020]208)、黔南民族师范学院校级项目(批准号: 2018XJG0530, QNSY2018002)和重庆邮电大学移通学院高等教育教学改革研究项目(批准号: YTJG2019050)资助的课题
          Corresponding author:Ren Yin-Shuan,renyinshuan319@163.com
        • Funds:Project supported by the Science and Technology Department of Guizhou Province, China (Grant No. [2020]1Y208), the Guizhou Provincial Department of Education Project, China (Grant No. KY[2020]208), the Project of Qiannan Normal College for Nationalities, China (Grant Nos. 2018XJG0530, QNSY2018002), and the Research Project of Teaching Reform in College of Mobile Telecommunications, Chongqing University of Posts and Telecom, China (Grant No. YTJG2019050)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

      • Sample Compsition of solvent/mL Sulfur, zinc and cadium
        source/mmol
        Chromic chloride hexahydrate/mmol Concentration of oxalic
        acid/mmol
        A 10 EN + 20 EA 1 S + 1 ZnO 0.250 0.025
        B 20 EN + 10 EA 1 S + 1 ZnO 0.500 0.025
        E 15 EN + 15 EA 1 S + 1 ZnO 0 0.025
        C 10 EN + 20 EA 1 S + 1 CdO 0.250 0.025
        D 20 EN + 10 EA 1 S + 1 CdO 0.500 0.025
        F 15 EN + 15 EA 1 S + 1 CdO 0 0.025
        下载: 导出CSV

        Cr content/% Morphologies Size/nm Magnetic properties Coercivity/Oe Saturation magnetization/
        (10–3emu·g–1)
        ZnS 0 Hexagonal flake 310—390 Diamagnetism
        4.31 flower-like sheet 210—290 Ferromagnetism 54.721 2.314
        7.25 Flower-like sheet 200—250 Ferromagnetism 88.441 5.683
        CdS 0 Snowflake 110—160 Weak ferromagnetism 74.631 0.854
        1.84 Snowflake 100—170 strong ferromagnetism 114.372 2.351
        2.12 Snowflake 100—200 Strong ferromagnetism 64.349 7.525
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

      • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红.二维钒掺杂Cr2S3纳米片的生长与磁性研究. 必威体育下载 , 2024, 0(0): 0-0.doi:10.7498/aps.73.20231229
        [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红.二维钒掺杂Cr2S3纳米片的生长与磁性研究. 必威体育下载 , 2023, 72(24): 247501.doi:10.7498/aps.72.20231229
        [3] 王春杰, 王月, 高春晓.高压下纳米晶ZnS晶粒和晶界性质及相变机理. 必威体育下载 , 2020, 69(14): 147202.doi:10.7498/aps.69.20200240
        [4] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军.第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 必威体育下载 , 2018, 67(21): 217501.doi:10.7498/aps.67.20181129
        [5] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭.非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 必威体育下载 , 2017, 66(5): 056101.doi:10.7498/aps.66.056101
        [6] 王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦, W. Cao.Cu掺杂ZnO磁性能的实验与理论研究. 必威体育下载 , 2014, 63(15): 157502.doi:10.7498/aps.63.157502
        [7] 谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高.Zn0.97Cr0.03O的PLD制备及其铁磁性. 必威体育下载 , 2014, 63(7): 077102.doi:10.7498/aps.63.077102
        [8] 赵翠莲, 甄聪棉, 马丽, 潘成福, 侯登录.Ge纳米结构的形貌与铁磁性研究. 必威体育下载 , 2013, 62(3): 037502.doi:10.7498/aps.62.037502
        [9] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹.结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 必威体育下载 , 2012, 61(1): 017501.doi:10.7498/aps.61.017501
        [10] 丁斌峰, 相凤华, 王立明, 王洪涛.He+辐照对Ga0.94Mn0.06As薄膜铁磁性的改善. 必威体育下载 , 2012, 61(4): 046105.doi:10.7498/aps.61.046105
        [11] 李振武.纳米CdS/碳纳米管复合材料的光电特性. 必威体育下载 , 2012, 61(1): 016103.doi:10.7498/aps.61.016103
        [12] 刘军, 周伟昌, 张建福.CdS:Cu一维纳米结构及其光子学特性研究. 必威体育下载 , 2012, 61(20): 206101.doi:10.7498/aps.61.206101
        [13] 肖振林, 史力斌.利用第一性原理研究Ni掺杂ZnO铁磁性起源. 必威体育下载 , 2011, 60(2): 027502.doi:10.7498/aps.60.027502
        [14] 林竹, 郭志友, 毕艳军, 董玉成.Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 必威体育下载 , 2009, 58(3): 1917-1923.doi:10.7498/aps.58.1917
        [15] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻.Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 必威体育下载 , 2008, 57(7): 4539-4544.doi:10.7498/aps.57.4539
        [16] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓.钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究. 必威体育下载 , 2008, 57(11): 7274-7278.doi:10.7498/aps.57.7274
        [17] 匡安龙, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为.稀释磁性半导体Sn1-xMnxO2的室温铁磁性. 必威体育下载 , 2005, 54(6): 2934-2937.doi:10.7498/aps.54.2934
        [18] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆.ZnS中Te等电子中心的时间分辨光谱研究. 必威体育下载 , 2005, 54(5): 2272-2276.doi:10.7498/aps.54.2272
        [19] 王永忠, 张志东.磁性物质中冷无序能的作用. 必威体育下载 , 2002, 51(2): 410-414.doi:10.7498/aps.51.410
        [20] 荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元.具有宽过冷液相区的Fe62Co8-x(Cr,Mo)xNb4Zr6B20非晶态合金的热稳定性与磁性. 必威体育下载 , 2001, 50(11): 2235-2240.doi:10.7498/aps.50.2235
      计量
      • 文章访问数:4339
      • PDF下载量:46
      • 被引次数:0
      出版历程
      • 收稿日期:2020-11-20
      • 修回日期:2021-02-10
      • 上网日期:2021-06-25
      • 刊出日期:2021-07-05

        返回文章
        返回
          Baidu
          map