In-depth understanding is limited to the oscillation properties of a droplet on a superhydrophobic surface, which are closely related to the contact line movement, droplet volume, and substrate amplitude, to name only a few factors. In the present work, we investigate the characteristics of droplet resonance amplitude, mode range, and resonance frequency, as well as their correlations with droplet volume (from 20 to 500 μL). In particular, the theoretical resonance frequency is mainly concerned and addressed. To this end, a model based on general hydrophobic surfaces proposed by Noblin et al. is employed, with its applicability to superhydrophobic surfaces examined. We propose a concept “virtual stationary point” for analyzing the errors from this model, with which we modify the model through using the correction coefficients. The main results are concluded as follows. 1) Under resonance, the change rate in droplet height rises with the increase of droplet volume and reduces with the increase of oscillation mode number. 2) Each number of oscillation mode corresponds to a frequency range, and the ends of adjacent mode ranges are connected to each other. These frequency ranges decrease with the increase of droplet volume. 3) Resonance frequency,
f, decreases with the increase of droplet volume,
V, and they are related approximated by
f-
V
–0.4under high mode numbers, which is different from
f-
V
–0.5as found on general hydrophobic surfaces. 4) Direct application of Noblin model to a superhydrophobic surface results in nonnegligible errors, because geometric characteristics in this case are different from those on a general hydrophobic surface, which leads to inaccuracy in counting the number of surface wave segments. In contrast, results from modified Noblin model accord well with experimental results.