搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    王玉龙, 张晓虹, 李丽丽, 高俊国, 郭宁, 程成

    Localization and intensity calibration of partial discharge based on attenuation effect of ultrasonic sound pressure

    Wang Yu-Long, Zhang Xiao-Hong, Li Li-Li, Gao Jun-Guo, Guo Ning, Cheng Cheng
    PDF
    HTML
    导出引用
    • 局部放电是导致电力设备绝缘劣化或击穿的重要原因之一. 为此, 结合即到达时差法定位原理, 在广义互相关法的基础上, 引入量子遗传算法对局部放电源进行精准定位. 而后以声波传播损耗、反射及折射现象导致的声压衰减效应为研究切入点, 首次建立局部放电源超声波信号标定的数学模型. 结果表明: 在针-板放电模型中, 利用量子遗传算法计算的局部放电源较为精准, 其最大偏差为(0.27 ± 0.13) cm, 与遗传算法、模拟退火算法、粒子群优化算法以及广义互相关法相比, 其定位精度分别提高了33.57%, 41.51%, 32.12%以及87.26%. 与此同时, 由于声压衰减效应, 当测量得到的超声信号电压幅值相同时, 随着测试距离增大, 放电源处的视在放电量逐渐增加. 若测试距离为37.80 cm时, 局部放电源的视在放电量为633.83 pC, 与7.00 cm相比, 放电强度增大了28.51%. 局部放电源的放电曲线与标定拟合曲线几乎完全重合, 验证了放电源放电程度标定模型的准确性.
      In the insulation system of power equipment, the partial discharge (PD) of short period does not cause the insulation to produce the penetrating breakdown, however the long-term PD of is one of the important causes of local deterioration, and even breakdown in dielectric. Therefore, it is very important to study the location of PD source and the calibration of discharge intensity. To achieve this, in this paper we take the needle-plate discharge model for example and go through the following steps respectively. Firstly, combined with the positive correlation between the ultrasonic signal and the apparent discharge magnitude in the process of PD, the ultrasonic method to detect partial discharge can be implemented. Then, based on the principle of time difference of arrival method (TDOAM), the accuracy of location is analyzed by using quantum genetic algorithm (QGA), genetic algorithm (GA), simulated annealing algorithm (SAA), particle swarm optimization (PSO) and generalized cross correlation method (GCC), respectively. And thus, starting from the study of the attenuation effect of sound pressure caused by the propagation loss, reflection and refraction of acoustic wave, the calibration model of PD intensity is established for the first time after determining the location of PD source with high precision. Some important findings are extracted from simulations and experimental results. First, the localization algorithm of PD source with high precision is observed. The localization of PD source by means of QGA is the most accurate, with maximum deviation of (0.27 ± 0.13) cm. Comparing with GA, SAA, PSO and GCC, the accuracy of location is improved by 33.57%, 41.51%, 32.11% and 87.26%, respectively. Second, due to the attenuation effect of sound pressure, when the measured voltage amplitude of ultrasonic signal is the same, the apparent discharge magnitude of PD source gradually increases with the test distance increasing. When the test distance is 37.80 cm, the apparent discharge magnitude of PD source is 633.83 pC, which increases by 28.51% compared with 7.00 cm. Moreover, simulation results and measurement results are compared with each other and they are well consistent. The discharge curve almost coincides with the calibration fitting curve of PD source when the test distance is 7.00 cm. Finally, it is concluded that the discharge intensity calibration model of PD source is accurate, which is of great significance in evaluating the extent of insulation damage.
          通信作者:张晓虹,x_hzhang2002@hrbust.edu.cn
        • 基金项目:国家自然科学基金(批准号: 51577045)和广东省普通高校青年创新人才项目(批准号: 2020KQNCX117)资助的课题
          Corresponding author:Zhang Xiao-Hong,x_hzhang2002@hrbust.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 51577045) and the Youth Innovation Talent Project of Universities of Guangdong Province, China (Grant No. 2020KQNCX117)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • 使用算法 研究对象 综合距离误差ΔR/cm 最大偏差Dmax/cm
        广义互相关算法 油箱体内 3.9 4.4
        时延法 变压器绝缘 0.8 0.6
        基于高斯-牛顿迭代的等值声速修正算法 1.7 1.6
        粒子群优化算法 2.2 1.9
        遗传算法 1.8 2.0
        多平台测向与全局搜索的阵列定位的结合 三电容放电管模型 7.8 6.0
        基于测向线公垂线中点的局部放电相控超声几何定位算法 13.9 10.3
        Chan算法 电缆绝缘 9.0 12.0
        下载: 导出CSV

        过程 程序
        种群初
        始化
        $Q\left( t \right) = \left| { {\psi _{q_j^0} } } \right\rangle = \displaystyle\sum\limits_{k = 1}^{ {2^m} } {\dfrac{1}{ {\sqrt { {2^m} } } }\left| { {S_k} } \right\rangle }$
        预设进
        化条件
        Cmax,t,N,Pmax,Pc
        算法
        实现
        Fort= 1, 2, 3, ···,Cmax
         fori= 1, 2, ···,N
         ${P_i} = {f_i}\Big/\sum\limits_{i = 1}^N { {f_i} }$
         $\quad P(t) = \left\{ {p_1^t, p_2^t, \cdots, p_n^t} \right\},$
         ${P_c} \!=\! \left\{\!\!\!\! \begin{array}{l}\dfrac{ { { {P_{c\max} } + {P_{\min} } } } }{ {1 \!+\! \exp\left\{ {A\left[ {\dfrac{ {2(f-f')} }{ { {f_{\max} } - {f_{\rm{avg} } } } } } \right]} \right\} } } \!+\! {P_{c\min} }, ~{f \!\geqslant\! {f_{\rm{avg} } } } \\ {P_{c\max} }, \qquad\quad\qquad\qquad\quad\qquad\qquad{f \!\leqslant\! {f_{\rm{avg} } } } \end{array} \right.$
         ${P_m} \!=\! \left\{\!\!\!\! \begin{array}{l} \dfrac{ { { {P_{m\max} } - {P_{\min} } } } }{ {1 \!+\! \exp\left\{ {A\left[ {\dfrac{ {2( {f'' - f'})} }{ { {f_{\max} } - {f_{\rm{avg} } } } } } \right]} \right\} } } \!+\! {P_{m\min} }, ~~{f'' \geqslant {f_{\rm{avg} } } } \\ {P_{m\max} },\;\;\; \qquad\quad\qquad\qquad\qquad\qquad\quad{f'' \leqslant {f_{\rm{avg} } } } \end{array} \right.$
         ${F_{t + 1} }({U({x, y, z, {v_{\rm{e} } }})}) \!=\! {C_{t\max} } \!-\! {U_t}( {x, y, z, {v_{\rm{e} } }})$
         $X_i \;\& \; x_{ {\rm best}, i}\; \& \; f(x) > f(x_{ {\rm best}, i}) \; \& \; \Delta \theta_i$
        S(αi,βi);
         end
        end
        S(αi,βi);P(t);X;
        下载: 导出CSV

        xi xbest,i f(x) >f(xbest,i) Δθi S(αi,βi)
        αiβi> 0 αiβi< 0 αi= 0 βi= 0
        0 0 false 0 0 0 0 0
        0 0 true 0 0 0 0 0
        0 1 false 0.01π +1 –1 0 ± 1
        0 1 true 0.01π –1 +1 ± 1 0
        1 0 false 0.01π –1 +1 ± 1 0
        1 0 true 0.01π +1 –1 0 ± 1
        1 1 false 0 0 0 0 0
        1 1 true 0 0 0 0 0
        下载: 导出CSV

        算法 参数 数值
        QGA 群体数量 40
        最大遗传次数 200
        GA 群体数量 40
        最大遗传次数 200
        重组概率 0.9
        变异概率 0.01
        SAA 初始温度 10
        最终温度 0.0001
        衰减系数 0.8
        冷却新状态迭代次数 1000
        PSO 种群大小 40
        学习因子 2
        初始惯性权值 0.9
        原始粒子群 1
        迭代次数 100
        下载: 导出CSV

        算法 位置
        实验组1 (12, 14, 6) cm 实验组2 (14, 10, 6) cm 实验组3 (15, 11, 6) cm 实验组4 (16, 12, 6) cm
        QGA (11.79, 13.61, 5.78) (13.78, 9.88, 6.06) (14.88, 10.86, 5.90) (15.82, 11.84, 5.88)
        GA (12.33, 14.24, 5.73) (13.62, 10.22, 6.16) (14.65, 11.24, 6.22) (16.34, 12.30, 6.24)
        SAA (11.58, 13.41, 5.78) (13.66, 10.32, 6.24) (15.34, 11.22, 6.20) (16.32, 12.28, 6.26)
        PSO (12.12, 14.21, 6.15) (14.32, 9.72, 5.84) (15.42, 11.28, 6.30) (16.42, 12.34, 6.32)
        GCC (13.38, 15.06, 7.42) (15.51, 9.62, 6.94) (15.71, 8.32, 7.24) (14.76, 10.31, 7.13)
        下载: 导出CSV

        电缆纸厚度/mm 系统灵敏度 相关系数
        2 14.91 0.99
        3 14.37 0.99
        4 14.84 0.99
        下载: 导出CSV

        线性系数 K0 K1 K2 K3 K4
        数值 5.01 2.98 2.93 2.86 2.95
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • [1] 杨斌, 魏烁, 史开元.基于等效弹性模量的微裂纹-超声波非线性作用多阶段模型. 必威体育下载 , 2017, 66(13): 134301.doi:10.7498/aps.66.134301
        [2] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟.毛细管放电69.8nm激光强度空间分布特性研究. 必威体育下载 , 2016, 65(9): 095201.doi:10.7498/aps.65.095201
        [3] 曾喆昭, 周勇, 胡凯.基于扩展型Duffing振子的局部放电信号检测方法研究. 必威体育下载 , 2015, 64(7): 070505.doi:10.7498/aps.64.070505
        [4] 李丹, 胡海云.基于局部放电理论的聚合物电介质击穿动力学理论研究. 必威体育下载 , 2014, 63(11): 117701.doi:10.7498/aps.63.117701
        [5] 王天舒, 张瑞德, 关哲, 巴柯, 俎云霄.忆阻元件与RLC以及二极管串并联电路的特性研究. 必威体育下载 , 2014, 63(17): 178101.doi:10.7498/aps.63.178101
        [6] 陈冲, 丁炯, 张宏, 陈琢.累积放电模型及其符号动力学研究. 必威体育下载 , 2013, 62(14): 140502.doi:10.7498/aps.62.140502
        [7] 吴勇峰, 黄绍平, 金国彬.基于耦合Duffing振子的局部放电信号检测方法研究. 必威体育下载 , 2013, 62(13): 130505.doi:10.7498/aps.62.130505
        [8] 张晓星, 孟凡生, 唐炬, 杨冰.羟基碳纳米管吸附SF6放电分解组分的DFT计算. 必威体育下载 , 2012, 61(15): 156101.doi:10.7498/aps.61.156101
        [9] 古华光, 朱洲, 贾冰.一类新的混沌神经放电的动力学特征的实验和数学模型研究. 必威体育下载 , 2011, 60(10): 100505.doi:10.7498/aps.60.100505
        [10] 张旭, 周玉泽, 闭强, 杨兴华, 俎云霄.有边界条件的忆阻元件模型及其性质. 必威体育下载 , 2010, 59(9): 6673-6680.doi:10.7498/aps.59.6673
        [11] 鄂鹏, 韩轲, 武志文, 于达仁.磁场强度对霍尔推力器放电特性影响的实验研究. 必威体育下载 , 2009, 58(4): 2535-2542.doi:10.7498/aps.58.2535
        [12] 董丽芳, 杨丽, 李永辉, 张彦召, 岳晗.空气介质阻挡放电单个微放电通道发光强度及振动激发温度的空间分布. 必威体育下载 , 2009, 58(12): 8461-8466.doi:10.7498/aps.58.8461
        [13] 宋男男, 吴士平, 栾义坤, 康秀红, 李殿中.卧式离心铸造过程数值模拟与水力学试验研究. 必威体育下载 , 2009, 58(13): 112-S117.doi:10.7498/aps.58.112
        [14] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金.池沸腾传热的数学分析. 必威体育下载 , 2009, 58(4): 2523-2527.doi:10.7498/aps.58.2523
        [15] 高妍琦, 朱宝强, 刘代中, 彭增云, 林尊琪.四程放大自动准直系统数学模型研究. 必威体育下载 , 2008, 57(11): 6992-6997.doi:10.7498/aps.57.6992
        [16] 郭永存, 曾亿山, 卢德唐.地层静温预测的非牛顿流体数学模型. 必威体育下载 , 2005, 54(2): 802-806.doi:10.7498/aps.54.802
        [17] 王 涛, 陈清明, 毛代胜.磁约束放电CO激光模型. 必威体育下载 , 2000, 49(12): 2369-2373.doi:10.7498/aps.49.2369
        [18] 杨世.表面压诱导的外消旋双亲分子单层手征相分离的数学模型及其二维古典解. 必威体育下载 , 1998, 47(10): 1673-1679.doi:10.7498/aps.47.1673
        [19] 都有为, 童兴武, 钟伟, 王挺祥, 干昌明, 章肖融.超声波在磁性液体中的传播特性. 必威体育下载 , 1992, 41(1): 144-148.doi:10.7498/aps.41.144
        [20] 魏荣爵, 张淑仪.超声波在悬浮液(水)中的吸收. 必威体育下载 , 1965, 21(5): 1061-1074.doi:10.7498/aps.21.1061
      计量
      • 文章访问数:5192
      • PDF下载量:78
      • 被引次数:0
      出版历程
      • 收稿日期:2020-10-17
      • 修回日期:2020-11-27
      • 上网日期:2021-04-19
      • 刊出日期:2021-05-05

        返回文章
        返回
          Baidu
          map