搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

钟东洲, 曾能, 杨华, 徐喆

Precise ranging for the multi regions of two complex-shape targets by using two chaotic polarization components in the optically pumped spin vertical cavity surface emitting laser with optical injection

Zhong Dong-Zhou, Zeng Neng, Yang Hua, Xu Zhe
PDF
HTML
导出引用
  • 基于外部光注入的光泵浦自旋垂直腔表面发射激光器(vertical cavity surface-emitting laser, VCSEL)的两个混沌偏振分量, 提出了对两个复杂形状目标中的多区域精确测距方案. 这里, 两个混沌偏振探测波具有飞秒量级快速动态并且被双极性sinc波形调制, 使它们具有时空不相关特性. 利用这些特性, 通过计算多束延时反馈混沌偏振探测波形和与之相对应的参考波形的相关性, 实现了对两个复杂形状目标多区域位置矢量精确测量. 研究结果表明, 对多区域小目标的测距具有非常低的相对误差(低于0.94%). 当光电探测器的带宽足够大时, 其测距的分辨率达到0.4 mm, 并具有很强的抗噪声能力. 本文的研究结果在复杂形状目标的精确测距方面具有潜在应用.
    The ranging based on the chaotic lidar (CLR) generated by using the nonlinear dynamic of semiconductor with optical feedback or optical injection exhibits many advantages over the ranging using pulse lasers and CW lasers, such as low probability of intercept, strong anti-interference ability and low cost. Moreover, it has high resolution, benefiting from the broad bandwidth of the optical chaos. Finally, it is easily be generated and controlled due to the sensitivity of chaotic radar to laser parameters. The resolution of the correlated chaotic lidar (CLR) ranging which has been reported in many literatures is largely limited by the bandwidth of the chaotic laser. An ultra-fast chaotic laser with large modulation bandwidth is required to further improve the ranging resolution. The recently proposed optically pumped spin-VCSEL has attractive features such as flexible spin control of lasing output, fast dynamics with femtosecond magnitude and large modulation bandwidth. The ultra-fast chaos radar wave emitted from the optically pumped spin-VCSEL with optical injection or optical feedback is expected to be used for improving the resolution and accuracy of target ranging. In addition, since the multi beams of CLRs were utilized in the previous works, the number of ranging targets is limited to a small number of targets. The reported CLR ranging technology cannot completely detect the distance of different regions in the target, and it is not suitable for the accurate ranging of the whole area in the complex shape target. The detection waveform based on the correlation CLR has not been designed before the target ranging, which affects the further improvement of the resolution and accuracy of the target ranging. To overcome these problems, it is necessary to further explore the theoretical and physical mechanism of the CLR ranging for the multi-region in complex shape target, and explore the new scheme and method for its realization. Motivated by these, in this paper, based on the optically pumped spin vertical cavity surface emitting laser with optical injection, we present a novel scheme for the accurate ranging of the multi regions in two complex shape targets, using two chaotic polarization components modulated by the bipolar sinc waveform. Here, these two modulated chaotic polarization probe waveforms possess the attractive features of the uncorrelation in time and space, fast dynamic with femtosecond magnitude. Utilizing these features, the accurate ranging to the position vectors of the multi regions of two complex-shape targets can be achieved by correlating the multi beams of the time-delay reflected chaotic polarization probe waveforms with their corresponding reference waveforms. The further investigations show that the ranging to the multi-region small targets possesses the very low relative error that is less than 0.94%. If the bandwidths of the photodetectors are large enough, their range resolutions are achieved as high as 0.4 mm, and exhibit excellent strong anti-noise performance and strong stability. The multi area target ranging proposed in our scheme has the following attractive advantages: stable and high range resolution, strong anti-noise ability and very low relative error. These characteristics can meet the needs of the position vector ranging of the multi regions in complex shape targets.
        通信作者:钟东洲,dream_yu2002@126.com
      • 基金项目:国家自然科学基金(批准号: 62075168)、广东省基础与应用重大项目(自然科学类) (批准号: 2017KZDX086)、广东省基础与应用研究基金(批准号: 2020A1515011088)和广东省普通高校重点领域专项(新一代通信技术)(批准号: 2020zdzx3052)资助的课题
        Corresponding author:Zhong Dong-Zhou,dream_yu2002@126.com
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 62075168), the Major Project of Basic Research and Applied Research for Natural Science of Guangdong Province, China (Grant No. 2017KZDX086), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2020A1515011088), and the Special Project in Key Fields of the Higher Education Institutions of Guangdong Province (the NewGeneration of Communication Technology), China (Grant No. 2020zdzx3052)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

    • 符号 参数
      $ \alpha $ 线宽增益因子 4
      $ \eta $ 总归一化泵浦功率 9
      $ \kappa $ 场衰减率 300
      p 泵浦极化椭圆率 1
      $ \beta $ 自发耦合因子 $ 10^9 $
      $ \gamma $ 电子密度衰减率 $1\; {\rm {ns}}^{-1} $
      $\gamma_{\rm a}$ 线性二向色性 $10\; {\rm {ns}}^{-1} $
      $\gamma_{\rm p}$ 线性双折射效应 $60\; {\rm {ns}}^{-1} $
      $\gamma_{\rm s}$ 自旋弛豫率 $120\; {\rm {ns}}^{-1} $
      $ k_{xinj} $ x-PC的光注入强度 $10\; {\rm {ns}}^{-1} $
      $ k_{yinj} $ y-PC的光注入强度 $10\; {\rm {ns}}^{-1} $
      $ \Delta \omega $ 频率失谐 30 × 109rad/s
      下载: 导出CSV

      ${{\mathit{\boldsymbol{r}}}}_{{1}, {{{j}}}}$ 位置矢量 ${{\mathit{\boldsymbol{r}}}}_{{1}, {{{j}}}} $ 位置矢量
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {1}} $ $-5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {6}} $ $-2.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3{{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {2}} $ $ -4.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {7}} $ $-2 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {3}} $ $-4 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {8}} $ $ -1.5{{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {4}} $ $-3.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {9}} $ $-1 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {5}} $ $-3 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {10}} $ $-0.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      下载: 导出CSV

      小区域$ A_{j} $ 目标点$ A^{(\iota)}_{j} $ $ {{\mathit{\boldsymbol{d}}}}_{{{A}}^{(\iota)}_{j}} $ $ \overline{{{\mathit{\boldsymbol{r}}}}}_{{{A}}^{(\iota)}_{j}} $ $ RE^{(\iota)}_{j} $
      $ A_1 $ $ A^{(1)}_1 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x}$ + 0.2$ {{\mathit{\boldsymbol{e}}}}_y$ –0.0001$ {{\mathit{\boldsymbol{e}}}}_{x}$ + 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.04%
      $ A^{(2)}_1 $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.17$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0498$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.17$ {{\mathit{\boldsymbol{e}}}}_y $ 0.14%
      $ A^{(3)}_1 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0002$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.13%
      $ A_2 $ $ A^{(1)}_2 $ –0.1$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0999$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.07%
      $ A^{(2)}_2 $ –0.12$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1199$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.05%
      $ A^{(3)}_2 $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0499$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1001$ {{\mathit{\boldsymbol{e}}}}_y $ 0.09%
      $ A^{(4)}_2 $ –0.1$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1002$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ 0.19%
      $ A_3 $ $ A^{(1)}_3 $ 0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0501$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.06%
      $ A^{(2)}_3 $ 0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0197$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ 0.88%
      $ A^{(3)}_3 $ 0.06$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.02$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0597$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.02$ {{\mathit{\boldsymbol{e}}}}_y $ 0.49%
      $ A_4 $ $ A^{(1)}_4 $ –0.16$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.01$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1599$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.01$ {{\mathit{\boldsymbol{e}}}}_y $ 0.08%
      $ A^{(2)}_4 $ –0.12$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1197$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.21%
      $ A^{(3)}_4 $ –0.16$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1602$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.11%
      $ A_5 $ $ A^{(1)}_5 $ –0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0198$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.94%
      $ A^{(2)}_5 $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0
      $ A^{(3)}_5 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0001$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.19%
      $ A_6 $ $ A^{(1)}_6 $ 0.1$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1003$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.31%
      $ A^{(2)}_6 $ 0.08$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0796$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.4%
      $ A^{(3)}_6 $ 0.13$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1301$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.05%
      $ A_7 $ $ A^{(1)}_7 $ –0.08$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0803$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.4%
      $ A^{(2)}_7 $ –0.07$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0705$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.38%
      $ A^{(3)}_7 $ –0.12$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1204$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.21%
      $ A_8 $ $ A^{(1)}_8 $ –0.03$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0299$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.05%
      $ A^{(2)}_8 $ –0.07$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ –0.07$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0
      $ A^{(3)}_8 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0001$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.04%
      $ A_9 $ $ A^{(1)}_9 $ 0.06$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0599$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.08%
      $ A^{(2)}_9 $ 0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0203$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.24%
      $ A^{(3)}_9 $ 0.04$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0401$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.02%
      $ A_{10} $ $ A^{(1)}_{10} $ 0.18$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.07$ {{\mathit{\boldsymbol{e}}}}_y $ 0.18$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.0701$ {{\mathit{\boldsymbol{e}}}}_y $ 0.02%
      $ A^{(2)}_{10} $ 0.13$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1297$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.18%
      $ A^{(3)}_{10} $ 0.15$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1501$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.07%
      $ A_{11} $ $ A^{(1)}_{11} $ 0.0 $ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0898$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.12%
      $ A^{(2)}_{11} $ 0.06$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0598$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.25$ {{\mathit{\boldsymbol{e}}}}_y $ 0.07%
      $ A^{(3)}_{11} $ 0.13$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.19$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1302$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.19$ {{\mathit{\boldsymbol{e}}}}_y $ 0.09%
      $ A_{12} $ $ A^{(1)}_{12} $ 0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0197$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.15%
      $ A^{(2)}_{12} $ 0.03$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0297$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.16%
      $ A^{(3)}_{12} $ 0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0501$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.02%
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

    • [1] 苏斌斌, 陈建军, 吴正茂, 夏光琼.混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 必威体育下载 , 2017, 66(24): 244206.doi:10.7498/aps.66.244206
      [2] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂.基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 必威体育下载 , 2016, 65(19): 194207.doi:10.7498/aps.65.194207
      [3] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼.可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性. 必威体育下载 , 2016, 65(16): 164204.doi:10.7498/aps.65.164204
      [4] 王小发, 吴正茂, 夏光琼.光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关. 必威体育下载 , 2016, 65(2): 024204.doi:10.7498/aps.65.024204
      [5] 孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼.基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究. 必威体育下载 , 2016, 65(1): 014207.doi:10.7498/aps.65.014207
      [6] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨.多横模垂直腔面发射激光器及其波长特性. 必威体育下载 , 2015, 64(16): 164203.doi:10.7498/aps.64.164203
      [7] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟.基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 必威体育下载 , 2015, 64(2): 024209.doi:10.7498/aps.64.024209
      [8] 钟东洲, 计永强, 邓涛, 周开利.电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 必威体育下载 , 2015, 64(11): 114203.doi:10.7498/aps.64.114203
      [9] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼.基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 必威体育下载 , 2015, 64(20): 204203.doi:10.7498/aps.64.204203
      [10] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂.互注入垂直腔表面发射激光器的多次偏振转换特性研究. 必威体育下载 , 2015, 64(2): 024208.doi:10.7498/aps.64.024208
      [11] 王小发, 李骏.短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 必威体育下载 , 2014, 63(1): 014203.doi:10.7498/aps.63.014203
      [12] 邓伟, 夏光琼, 吴正茂.基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 必威体育下载 , 2013, 62(16): 164209.doi:10.7498/aps.62.164209
      [13] 王小发.光电负反馈下垂直腔表面发射激光器偏振开关特性研究. 必威体育下载 , 2013, 62(10): 104208.doi:10.7498/aps.62.104208
      [14] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼.偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 必威体育下载 , 2012, 61(23): 234203.doi:10.7498/aps.61.234203
      [15] 李硕, 关宝璐, 史国柱, 郭霞.亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 必威体育下载 , 2012, 61(18): 184208.doi:10.7498/aps.61.184208
      [16] 钟东洲, 吴正茂.电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 必威体育下载 , 2012, 61(3): 034203.doi:10.7498/aps.61.034203
      [17] 黄雪兵, 夏光琼, 吴正茂.时变电流注入下光电负反馈垂直腔表面发射激光器的偏振双稳特性. 必威体育下载 , 2010, 59(5): 3066-3069.doi:10.7498/aps.59.3066
      [18] 王小发, 夏光琼, 吴正茂.光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究. 必威体育下载 , 2009, 58(7): 4669-4674.doi:10.7498/aps.58.4669
      [19] 钟东洲, 曹文华, 吴正茂, 夏光琼.各向异性光反馈注入的垂直表面发射激光器的矢量偏振模转换机理. 必威体育下载 , 2008, 57(3): 1548-1556.doi:10.7498/aps.57.1548
      [20] 钟东洲, 夏光琼, 王 飞, 吴正茂.基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究. 必威体育下载 , 2007, 56(6): 3279-3291.doi:10.7498/aps.56.3279
    计量
    • 文章访问数:5013
    • PDF下载量:96
    • 被引次数:0
    出版历程
    • 收稿日期:2020-10-13
    • 修回日期:2020-11-06
    • 上网日期:2021-03-19
    • 刊出日期:2021-04-05

      返回文章
      返回
        Baidu
        map