-
原子及近原子尺度制造在近年来一直是物质科学领域被广泛探讨的前沿问题. 当制造和加工的尺度从微米、纳米逐渐走向原子级别时, 材料在常规尺度下所具备的性质已无法通过经典理论进行解释, 相反地, 会在这一尺度下展现出一系列新奇的特性. 因而对材料极限制造尺度和颠覆性物性的不断追求始终是科学界共同关注的重点领域. 作为一种在纳米尺度下对结构制造单元进行精细操控的先进手段, DNA纳米技术的开发和发展为纳米制造甚至原子制造提供了新的观点和思路, 而DNA折纸术作为DNA纳米技术的重要组成部分, 正在凭借其在结构制造过程当中的高度可编程性成为纳米尺度下进行各类物质精准制造的独特的解决方案, 并可能为不同物质不同材料更小尺度和任意形状的精准构筑带来机遇. 本文首先简单概述了DNA折纸术的基本原理和发展历程, 然后根据制造策略的不同对DNA折纸结构的纳米制造的相关代表性工作做了总结, 并在文末提出了对于DNA折纸结构在原子制造中的可行性的思考和未来发展方向的展望.Atomic and atom-like manufacturing has thoroughly investigated by researchers from physical science and materials science in recent years. Several novel properties which cannot be explained by classical theories can be revealed by materials in the case of the manufacturing scale progressing from micron and nanometer to atomic level gradually, so that researchers from related fields have shown the constant pursuit of ultimate manufacturing scales and subversive properties. As an advanced method of precisely manipulating the structural units on a nanoscale, DNA nanotechnology has brought a new insight into nano/atomic manufacturing during its evolution. Meanwhile, the DNA origami technique has proposed the solutions for the accurate fabrication of matters based on its remarkable programmability in design process and might create opportunities for precise construction under more minute scale and more arbitrary shape for multiple matters and materials. In this review, we first briefly summarize the fundamentals, evolutions and several representative researches of DNA origami technique, and then we further summarize some corresponding investigations of nano-fabrications based on the DNA origami structures according to the fabrication strategies. Finally, we put forward some considerations of the potential feasibility in utilizing DNA origami structures for atomic manufacturing and give some prospects for the future development of this field.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]
计量
- 文章访问数:7300
- PDF下载量:208
- 被引次数:0