-
锡铅钙钛矿太阳电池已被证明可以用于全钙钛矿叠层太阳电池中, 作为窄带隙底电池进一步提高器件光电转换效率. 目前, P-I-N型锡铅钙钛矿太阳电池的最高效率为21.7%, 明显低于铅基钙钛矿太阳电池. 本文分析了限制其性能提高的主要因素, 并针对性地总结了近几年研究工作者们提出的有效解决策略, 主要包括: 1)通过添加富锡化合物、强还原剂或含大的有机阳离子的化合物以抑制Sn 2+氧化, 减少锡铅钙钛矿材料p型掺杂程度, 降低电池开路电压损耗; 2)通过调控组分、改变钙钛矿薄膜制备方法、溶剂工程或添加含功能性基团的化合物以延缓锡铅钙钛矿薄膜结晶生长速率, 提高薄膜质量; 3)通过选用合适的电子传输层或空穴传输层, 减少能级失配对载流子传输的影响或避免载流子传输层的本身不稳定性对器件的影响. 最后, 本文展望了锡铅钙钛矿太阳电池的未来发展, 认为其不仅有望实现高效稳定的单结太阳电池, 而且还可以应用于高效全钙钛矿叠层太阳电池.In order to break through the limit of Shockley-Queisser (SQ) radiation and further improve the efficiency of perovskite solar cells, tin-lead perovskite solar cells have widely and successfully been used as narrow-bandgap bottom cells in all-perovskite tandem solar cells. The highest efficiency of tin-lead perovskite solar cells has recently reached 21.7%, which, however, is still lower than that of lead-based perovskite solar cells. This article analyzes the main factors that limit the further improving of their performances, and summarizes the effective solutions proposed by researchers in recent years. The main points are as follows: 1) by adding tin-rich additives, strong reducing agents or compounds containing large organic cations, Sn 2+oxidation is inhibited and the p-doped degree of tin-lead perovskite and the open-circuit voltage loss are reduced; 2) through regulating the composition, changing the method of preparing the perovskite film, adding functional groups or solvent engineering, the crystallization rate of tin-lead perovskite film is delayed and the crystallization quality of the film is improved; 3) by selecting an appropriate electron transport layer or hole transport layer the influence of energy level mismatch on carrier transport or the instability of carrier transport layer on devices can be avoided. Finally, the future development of Sn-Pb perovskite solar cells is prospected. It is believed that the tin-lead perovskite solar cells can realize not only the high efficiency and stable single-junction solar cells, but also high efficiency perovskite-perovskite tandem solar cells.
-
Keywords:
- tin-lead perovskite/
- oxidation/
- crystal quality/
- energy level mismatch
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] -
Year Perovskite Device structure Eg/eV VOC/V JSC/(mA·cm–2) FF/% PCE/(%) Ref. 2016 MA0.5FA0.5Pb0.75Sn0.25I3 ITO/PEDOT:PSS/PVK/PCBM/Bis-C60/Ag 1.33 0.78 23.03 79 14.19 [49] 2016 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.25 0.795 26.86 70.6 15.08 [26] 2017 MA0.5FA0.5Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/PCBM/Bis-C60/Ag 1.2 0.78 25.69 70 14.01 [38] 2017 MAPb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK-DF-C60/ICBA/Bis-C60/Ag 1.22 0.87 26.1 69 15.61 [72] 2018 (t-BUA)2(FA0.85Cs0.15)n–1Pb0.6Sn0.4)nI3n+1 ITO/PEDOT:PSS/2 D-PVK/PCBM/BCP/Ag 1.24 0.70 24.2 63 10.6 [43] 2018 FA0.6MA0.4Sn0.6Pb0.4I3 ITO/PFI-(PEDOT:PSS)/PVK/PCBM/BCP/Ag 1.22 0.784 27.22 74.36 15.85 [81] 2018 (FAPbI3)0.7(CsSnI3)0.3 ITO/PEDOT:PSS/PVK/C60/BCP/Al 1.3 0.74 25.89 81.4 15.6 [36] 2018 (FASnI3)0.6(MAPbI3)0.34(MAPbBr3)0.06 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.272 0.888 28.72 74.6 19.03 [53] 2018 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.25 0.841 29.0 74.4 18.1 [30] 2018 FAPb0.7Sn0.3I3 ITO/PEDOT:PSS/PVK/PEAI/PC61BM/BCP/Ag 1.34 0.78 26.46 79 16.26 [54] 2018 FAPb0.75Sn0.25I3 ITO/NiOX/PVK/PC60BM/BCP/Ag 1.36 0.81 28.23 75.4 17.25 [27] 2018 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PBDBT:ITIC/PVK/C60/BCP/Ag 1.25 0.86 27.92 75.1 18.03 [82] 2019 FA0.8MA0.2Sn0.5Pb0.5I3 ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag 1.27 0.81 30 75 18.2 [61] 2019 (FAPb0.6Sn0.4I3)0.85(MAPb0.6Sn0.4Br3)0.15 ITO/PEDOT:PSS/PVK/PCBM/BisC60/Ag 1.28 0.87 26.45 79.1 18.21 [39] 2019 FA0.7MA0.3Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/PC60BM/BCP/Cu 1.22 0.831 31.4 80.8 21.1 [18] 2019 Cs0.1MA0.2FA0.7Pb0.5Sn0.5I3 ITO/NiOX/PVK/C60/BCP/Cu 1.2 0.771 31.1 73.3 17.6 [52] 2019 FA0.75Cs0.25Sn0.4Pb0.6I3 ITO/PVK/C60/BCP/Ag 1.25 0.72 32.59 69.8 16.4 [51] 2019 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.25 0.834 30.4 80.8 20.5 [55] 2019 Cs0.1MA0.2FA0.7Sn0.5Pb0.5I3 ITO/NiOX/PVK/C60/BCP/Cu 1.2 0.771 31.1 73.3 17.6 [52] 2020 (MAPbI3)0.75(FASnI3)0.25 ITO/PEDOT:PSS/PVK/BCP/Ag 1.33 0.79 28.42 78 17.51 [44] 2020 Cs0.1MA0.2FA0.7Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/PCBM/PEIE/Ag 1.25 0.81 30.3 78.9 19.4 [42] 2020 FA0.83Cs0.17Pb0.7Sn0.3I3 ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag 1.3 0.82 30.3 78.4 18.1 [9] 2020 FA0.7MA0.3Pb0.7Sn0.3I3 ITO/PEDOT:PSS(EMIC)/PVK/S-acetylthiocholine chlorde/C60/BCP/Ag 1.35 1.02 26.61 76 20.63 [66] 2020 FA0.66MA0.34Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.23 0.78 27.8 73 15.8 [54] 2020 FA0.5MA0.45Cs0.05Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PTAA/Cd-PVK/C60/BCP/Cu 1.22 0.85 30.2 79 20.3 [68] 2020 FA0.7MA0.3Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/C60/BCP/Cu 1.24 0.85 31.6 80.8 21.7 [4] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84]
计量
- 文章访问数:10259
- PDF下载量:273
- 被引次数:0