搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军

    Theoretical study of polarizabilities and hyperpolarizabilities of Be+ions and Li atoms

    Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun
    PDF
    HTML
    导出引用
    • 利用相对论模型势方法计算了Be +离子和Li原子的波函数、能级和振子强度, 进一步得到了基态的电偶极极化率和超极化率, 并详细地分析了不同中间态对基态超极化率的贡献. 对于Be +离子, 电偶极极化率和超极化率与已有的理论结果符合得非常好. 对于Li原子, 电偶极极化率与已有的理论结果符合得很好, 但是不同理论方法计算给出的超极化率差别非常大, 最大的差别超过了一个数量级. 通过分析不同中间态对Li原子基态超极化率的贡献, 解释了不同理论结果之间有较大差异的原因.
      The wave functions, energy levels, and oscillator strengths of Be +ions and Li atoms are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization method (RCICP). The calculated energy levels in this work are in good agreement with experimental levels tabulated in NIST Atomic Spectra Database, and the difference appears in the sixth digit after the decimal point. The present oscillator strengths are in good agreement with the existing theoretical and experimental results. By means of these energy levels and oscillator strengths, the electric-dipole static polarizabilities and hyperpolarizabilities of the ground states are determined. The contributions of different intermediate states to the hyperpolarizabilities of the ground state are further discussed. For Be +ions, the present electric-dipole polarizability and hyperpolarizability are in good agreement with the results calculated by Hartree-Fock plus core polarization method, the finite field method and relativistic many-body method. The largest contribution to the hyperpolarizability is the term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$ . For Li atoms, the present electric-dipole polarizability is in good agreement with the available theoretical and experimental results. However, the present hyperpolarizability is different from the other theoretical results significantly. Moreover, the hyperpolarizabilities calculated by different theoretical methods are quite different. The biggest difference is more than one order of magnitude. In order to explain the reason for these differences, we analyze the contributions of different intermediate states to the hyperpolarizability in detail. It is found that the sum of the contributions of the 2s→ np j $\left( {n \geqslant 3} \right)$ and np jnd j $\left( {n \geqslant 3} \right)$ to hyperpolarizability is approximately equal to that term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$ . The total hyperpolarizability, which is the difference between the sum of the contributions of the 2 snp j $\left( {n \geqslant 3} \right)$ and np jnd j $\left( {n \geqslant 3} \right)$ to hyperpolarizability and $\alpha _{\text{0}}^{\text{1}}{\beta _0}$ , is relatively small. Consequently, this difference magnifies the calculated error. If the uncertainties of the transition matrix elements are less than 0.1%, the uncertainty of hyperpolarizability is more than 100%. Therefore, the differences of hyperpolarizabilities for the ground state of Li atoms, calculated by various theoretical methods, are more than 100% or one order of magnitude.
          通信作者:蒋军,phyjiang@yeah.net
        • 基金项目:国家重点研发计划(批准号: 2017YFA0402300)和国家自然科学基金(批准号: 11774292, 11804280, 11864036)资助的课题
          Corresponding author:Jiang Jun,phyjiang@yeah.net
        • Funds:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant Nos. 11774292, 11804280, 11864036)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

      • State j ρl,j
        Be+ Li
        2s 1/2 0.9552 1.40880
        2p 1/2 0.8789 1.28466
        3/2 0.8775 1.28396
        3d 3/2 0.1287 2.324
        5/2 0.1284 2.330
        下载: 导出CSV

        State j Be+ Li
        RCICP Expt.[42] RCICP Expt.[42]
        2s 1/2 –0.66924767 –0.66924755 –0.1981419 –0.1981419
        2p 1/2 –0.52376962 –0.52376949 –0.1302358 –0.1302358
        3/2 –0.52373967 –0.52373953 –0.1302343 –0.1302343
        3s 1/2 –0.26719384 –0.26723337 –0.0741684 –0.0741817
        3p 1/2 –0.22954214 –0.22958234 –0.0572264 –0.0572354
        3/2 –0.22953331 –0.22957356 –0.0572260 –0.0572354
        3d 3/2 –0.22247809 –0.22247805 –0.0556055 –0.0556057
        5/2 –0.22247565 –0.22247565 –0.0556051 –0.0556055
        4s 1/2 –0.14313397 –0.14315285 –0.0386096 –0.0386151
        4p 1/2 –0.12811380 –0.12813485 –0.0319693 –0.0319744
        3/2 –0.12811009 –0.12813115 –0.0319691 –0.0319744
        4d 3/2 –0.12512357 –0.12512455 –0.0308153 –0.0312735
        5/2 –0.12512257 –0.12512345 –0.0308152 –0.0312734
        5s 1/2 –0.08905659 –0.08906605 –0.0236202 –0.0236365
        5p 1/2 –0.08159826 –0.08160960 –0.0203583 –0.0203739
        3/2 –0.08159637 –0.08160765 –0.0203583 –0.0203739
        5d 3/2 –0.08006698 –0.08006725 –0.0124153 –0.0200122
        5/2 –0.08006648 –0.08006670 –0.0124152 –0.0200122
        下载: 导出CSV

        Transitions RCICP NIST[42] Theor.[25] Diff./%
        2s1/2→2p1/2 0.16624 0.16596 0.1661 0.17
        2s1/2→2p3/2 0.33258 0.33198 0.3322 0.18
        2s1/2→3p1/2 0.02760 0.02768 0.0277 0.29
        2s1/2→3p3/2 0.05517 0.05540 0.0553 0.42
        2p1/2→3s1/2 0.06434 0.06438 0.0644 0.06
        2p3/2→3s1/2 0.06436 0.06438 0.0644 0.03
        2p1/2→4s1/2 0.01022 0.01039 0.0102 1.64
        2p3/2→4s1/2 0.01022 0.01039 0.0102 1.64
        2p1/2→3d3/2 0.6320 0.6320 0.6319 0.00
        2p3/2→3d3/2 0.0632 0.0632 0.0632 0.00
        2p3/2→3d5/2 0.5689 0.5689 0.5688 0.00
        3s1/2→3p1/2 0.2768 0.2767 0.2767 0.04
        3s1/2→3p3/2 0.5538 0.5535 0.5535 0.05
        3p1/2→3d3/2 0.08069 0.08113 0.0811 0.54
        3p3/2→3d3/2 0.08059 0.08103 0.081 0.54
        3p3/2→3d5/2 0.07256 0.07294 0.073 0.52
        3p1/2→4s1/2 0.1346 0.1347 0.1346 0.07
        3p3/2→4s1/2 0.1346 0.1347 0.1346 0.07
        下载: 导出CSV

        Transitions RCICP NIST[42] Theor.[29] Diff./%
        2s1/2→2p1/2 0.24915 0.24899 0.2490 0.06
        2s1/2→2p3/2 0.49832 0.49797 0.4981 0.07
        2s1/2→3p1/2 0.00157 0.00157 0.0016 0.00
        2s1/2→3p3/2 0.00313 0.00314 0.0032 0.32
        2p1/2→3s1/2 0.11058 0.11050 0.1106 0.07
        2p3/2→3s1/2 0.11059 0.11050 0.1106 0.08
        2p1/2→4s1/2 0.01285 0.01283 0.0128 0.16
        2p3/2→4s1/2 0.01285 0.01283 0.0128 0.16
        2p1/2→3d3/2 0.63876 0.63858 0.6386 0.03
        2p3/2→3d3/2 0.06388 0.06386 0.0639 0.03
        2p3/2→3d5/2 0.57489 0.57472 0.5747 0.03
        3s1/2→3p1/2 0.40512 0.4051 0.405 0.00
        3s1/2→3p3/2 0.81027 0.8100 0.810 0.03
        3p1/2→3d3/2 0.07397 0.0733 0.0744 0.91
        3p3/2→3d3/2 0.00740 0.00736 0.0074 0.54
        3p3/2→3d5/2 0.06657 0.0663 0.0669 0.41
        3p1/2→4s1/2 0.22325 0.2230 0.2232 0.11
        3p3/2→4s1/2 0.22325 0.2230 0.2232 0.11
        3d3/2→4p1/2 0.01453 0.01497 0.015 2.94
        3d3/2→4p3/2 0.00290 0.00299 0.003 3.01
        3d5/2→4p3/2 0.01743 0.01796 0.018 2.95
        下载: 导出CSV

        Method $\alpha _{\rm{0}}^{\rm{1}}$/a.u. γ0/a.u. Diff./%
        RCICP 24.504(32) –11529.971(84)
        Coulomb approximation[43] 24.77
        Variation-perturbation Hylleraas CI[44] 24.5
        Hylleraas[24] 24.489
        Asymptotic correct wave function[45] 24.91
        Variation-perturbation FCCI[46,47] 24.495
        Hartree-Fock plus core polarization[22] 24.493 –11511 0.16
        Hylleraas[22] 24.4966(1) –11521.30(3) 0.08
        Relativistic many-body calculation[25] 24.483(4) –11496(6) 0.29
        The finite field method[30] 24.5661 –11702.31 1.49
        下载: 导出CSV

        Contr. RCICP RCICPC RMBT[25]
        $\tfrac{1}{18}$T(s, p1/2, s, p1/2) 34.34(2) 34.32 32.605(53)
        $-\tfrac{1}{18}$T(s, p1/2, s, p3/2) 68.68(5) 68.63 68.886(92)
        $-\tfrac{1}{18}$T(s, p3/2, s, p1/2) 68.68(5) 68.63 68.886(92)
        $\tfrac{1}{18}$T(s, p3/2, s, p3/2) 137.35(10) 137.25 137.669(109)
        $T({\rm{s, }}{{\rm{p}}_{j'}}, {\rm{ s}}, {\rm{ }}{{\rm{p}}_{j''}})$ 308.04(12) 308.83 308.046(178)
        $\tfrac{1}{18}$T(s, p1/2, d3/2, p1/2) 202.75(16) 202.59 202.031(121)
        $\tfrac{1}{18\sqrt{10} }$T(s, p1/2, d3/2, p3/2) 40.55(4) 40.51 40.403(18)
        $\tfrac{1}{18\sqrt{10} }$T(s, p3/2, d3/2, p1/2) 40.55(4) 40.51 40.403(18)
        $\tfrac{1}{180}$T(s, p3/2, d3/2, p3/2) 8.11(1) 8.10 8.080(3)
        $\tfrac{1}{30}$T(s, p3/2, d5/2, p3/2) 437.85(40) 437.45 438.434(148)
        $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$ 729.79(43) 729.17 729.351(192)
        $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$ 1999.67(6.95) 1992.72 1995.743(382)
        γ0(2 s) –11529(84) –11456 –11496(6)
        下载: 导出CSV

        Method $\alpha _{\rm{0}}^{\rm{1}}$ γ0
        RCICP 164.05(8) 1920(3264)
        The coupled cluster (all single, double and triple substitution)[1] 164.19 2880
        Finite-field quadratic configuration interaction[1] 164.32 1020
        Hylleraas[31] 164.112(1) 3060(40)
        The relativistic coupled-cluster method[48] 164.23
        Relativistic variation perturbation[49] 164.084
        Relativistic all-order methods[29] 164.16(5)
        Variation perturbation[33] 164.10 3000
        Semiempirical pseudopotentials[26] 164.08 65000
        Frozen core Hamiltonian with a semiempirical polarization potential[50] 164.21
        Finite-field fourth-order many-body perturbation theory[34] 164.5 4300
        Configuration interaction[35] 164.9 37000
        Relativistic ab initio methods[51] 164.0(1)
        The restricted Hartree-Fock[32] 170.1 –55000
        The Rydberg-Klein-Rees inversion method with the quantum defect theory[52] 164.14 3390
        Exp.[53] 164(3)
        Exp.[54] 164.2(11)
        下载: 导出CSV

        Contr. RCICP/a.u. RCICPC/a.u. Diff. /%
        $ \frac{1}{18} $T(s, p1/2, s, p1/2) 8314(2) 8312 0.03
        $ -\frac{1}{18} $T(s, p1/2, s, p3/2) 16629(5) 16624 0.03
        $ -\frac{1}{18} $T(s, p3/2, s, p1/2) 16629(5) 16624 0.03
        $ \frac{1}{18} $T(s, p3/2, s, p3/2) 33259(11) 33248 0.03
        $T({\rm{s}}, {{\rm{p}}_{j'}}, {\rm{s}}, {{\rm{p}}_{j''}})$ 74833(13) 74809 0.02
        $ \frac{1}{18} $T(s, p1/2, d3/2, p1/2) 33812(13) 33799 0.04
        $ \frac{1}{18\sqrt{10}} $T(s, p1/2, d3/2, p3/2) 6762(3) 6759 0.04
        $ \frac{1}{18\sqrt{10}} $T(s, p3/2, d3/2, p1/2) 6762(3) 6759 0.04
        $ \frac{1}{180} $T(s, p3/2, d3/2, p3/2) 1352(0) 1352 0.00
        $ \frac{1}{30} $T(s, p3/2, d5/2, p3/2) 73033(40) 72993 0.05
        $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$ 121723(42) 121661 0.03
        $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$ 196396(268) 196128 0.14
        γ0(2 s) 1920(3264) 4109 170
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

      • [1] 杨威, 丁士缘, 孙保元.基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 必威体育下载 , 2024, 73(6): 062102.doi:10.7498/aps.73.20231632
        [2] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟.B2+和B+离子的静态偶极极化率和超极化率的理论研究. 必威体育下载 , 2023, 72(14): 143101.doi:10.7498/aps.72.20221990
        [3] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维.相对论多组态相互作用方法计算Mg+离子同位素位移. 必威体育下载 , 2018, 67(1): 013101.doi:10.7498/aps.67.20171817
        [4] 余学才, 汪平和, 张利勋.光晶格动量依赖偶极势中原子运动. 必威体育下载 , 2013, 62(14): 144202.doi:10.7498/aps.62.144202
        [5] 游阳明, 王炳章, 王吉有.P原子的光学模型势与核极化修正. 必威体育下载 , 2012, 61(20): 202401.doi:10.7498/aps.61.202401
        [6] 田密, 张秋菊, 白易灵, 崔春红.电子在线极化相对论强度驻波场中的散射研究. 必威体育下载 , 2012, 61(20): 203401.doi:10.7498/aps.61.203401
        [7] 朱菁, 吕昌贵, 洪旭升, 崔一平.分子一阶超极化率溶剂效应的理论研究. 必威体育下载 , 2010, 59(4): 2850-2854.doi:10.7498/aps.59.2850
        [8] 王利光, 张鸿宇, 王畅, Terence K. S. W..嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性. 必威体育下载 , 2010, 59(1): 536-540.doi:10.7498/aps.59.536
        [9] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟.有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 必威体育下载 , 2008, 57(5): 2987-2993.doi:10.7498/aps.57.2987
        [10] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊.4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 必威体育下载 , 2007, 56(10): 5843-5848.doi:10.7498/aps.56.5843
        [11] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊.有机分子第一超极化率色散效应和双光子共振增强理论研究. 必威体育下载 , 2006, 55(4): 1827-1831.doi:10.7498/aps.55.1827
        [12] 陈 洪, 梅 花, 沈彭年, 姜焕清.重夸克偶素质量谱的相对论夸克模型研究(已撤稿). 必威体育下载 , 2005, 54(3): 1136-1141.doi:10.7498/aps.54.1136
        [13] 刘玉孝, 赵振华, 王永强, 陈玉红.氦原子和类氦离子基态能量的变分计算及相对论修正. 必威体育下载 , 2005, 54(6): 2620-2624.doi:10.7498/aps.54.2620
        [14] 唐昌建, 宫玉彬, 杨玉芷.二维相对论运动等离子体的介电率张量. 必威体育下载 , 2004, 53(4): 1145-1149.doi:10.7498/aps.53.1145
        [15] 郑仰东, 李俊庆, 李淳飞.耦合双振子模型手性分子的微观参量对和频过程的影响. 必威体育下载 , 2002, 51(6): 1279-1285.doi:10.7498/aps.51.1279
        [16] 曾贵华, 诸鸿文, 徐至展.欠稠密等离子体中诱发的偶次相对论谐波. 必威体育下载 , 2001, 50(10): 1946-1949.doi:10.7498/aps.50.1946
        [17] 李高翔, 彭金生.论Jsynes-Cummings模型中原子偶极压缩和光场压缩间的关联. 必威体育下载 , 1995, 44(10): 1670-1678.doi:10.7498/aps.44.1670
        [18] 屈一至, 仝晓民, 李家明.电子与原子、离子碰撞过程的相对论效应. 必威体育下载 , 1995, 44(11): 1719-1726.doi:10.7498/aps.44.1719
        [19] 何兴虹, 李白文, 张承修.碱原子高里德堡态的极化率. 必威体育下载 , 1989, 38(10): 1717-1722.doi:10.7498/aps.38.1717
        [20] 吕景发.在相对论性电子上康普顿散射的极化自旋关联现象. 必威体育下载 , 1965, 21(11): 1927-1932.doi:10.7498/aps.21.1927
      计量
      • 文章访问数:10418
      • PDF下载量:172
      • 被引次数:0
      出版历程
      • 收稿日期:2020-08-24
      • 修回日期:2020-10-12
      • 上网日期:2021-02-03
      • 刊出日期:2021-02-20

        返回文章
        返回
          Baidu
          map