搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

姬超, 梁春军, 由芳田, 何志群

Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells

Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun
PDF
HTML
导出引用
  • 作为近些年来最耀眼的明星材料之一, 钙钛矿以其优异独特的光电特性成功吸引研究人员的广泛关注. 自2009年报道了第一篇光电转换效率为3.8%的钙钛矿电池, 到现在短短10年期间效率已经突破25.2%,几乎可以与商用多晶硅电池媲美. 尽管其制备过程简单, 但在薄膜的形成过程中很容易引入大量的缺陷. 缺陷的存在会加速载流子的复合, 阻碍载流子传输通道, 不利于制备高效率的钙钛矿太阳能电池; 同时也会影响钙钛矿电池工作的长期稳定性, 加速材料的降解, 阻碍了钙钛矿太阳能电池进一步商业化发展. 因此, 理解缺陷的存在机制并有效地抑制缺陷产生, 对制备高性能长寿命器件至关重要. 而界面修饰作为一种有效的钝化缺陷方法之一, 已经被广泛使用. 本文讨论了不同结构电池器件的缺陷产生位置及对器件性能的影响. 分别从载流子传输层钝化策略和钙钛矿界面修饰策略入手, 分析了常用的传输层/钙钛矿界面钝化缺陷的机制, 指出了钝化策略发展的巨大优势, 并对合适的钝化材料进行分类, 希望能够对高重复性、高光电转换效率、长期工作稳定的钙钛矿太阳能电池发展提供有益的指导.
    As one of the most dazzling star materials in recent years, perovskite has attracted extensive attention due to its unique photoelectric properties. Since the first report on 3.8% power conversion efficiency of perovskite solar cells (PSCs) was published in 2009, its efficiency has increased to 25.2% in a short period of 10 years, almost comparable to the efficiency of commercial polysilicon cells. However, due to its simple preparation process, it is easy to introduce a large number of defects in the film formation process. The defects accelerate the recombination of carriers and thus hindering the carrier transport channel, which is unfavorable for the preparation of high efficiency perovskite solar cells. Moreover, the existence of defects will affect the stability of PSCs, accelerate the degradation of materials, thereby hindering its further commercial development. Therefore, it is very important to understand the mechanism of defects and effectively suppress the generation of defects for the fabrication of high performance devices. As an effective passivation strategy, the interface modification has been widely used. In this paper, the locations of defects in different structures of devices and their effects on device performance are discussed. Based on the carrier transport layer passivation strategy and perovskite interface modification strategy, the mechanism of the passivation defects at the transport layer/perovskite interface is analyzed. The great advantages of passivation strategy and the classification of appropriate passivation materials are pointed out. It is hoped that this paper can provide useful guidance for developing the perovskite solar cells with high repeatability, high efficiency and long-term stability.
        通信作者:梁春军,chjliang@bjtu.edu.cn
      • 基金项目:国家自然科学基金(批准号: 61874008, 61574014, 11474017)和北京市科学技术项目(批准号: Z181100004718004)资助的课题
        Corresponding author:Liang Chun-Jun,chjliang@bjtu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 61874008, 61574014, 11474017) and the Beijing Municipal Science and Technology Project, China (Grant No. Z181100004718004)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

    • Passivation material Perovskite material Passivation position Jsc/(mA·cm–2) VOC(V) FF/% PCE/% Ref.
      ITIC-Th

      (FAPbI3)x(MAPbCl3)1–x TiO2/ITIC-Th 23.56
      22.89
      1.05
      1.02
      76.58
      66.10
      18.91a
      15.43b
      [21]
      H2PtCl6. MAPbI3 TiO2-Pt 23.83
      22.13
      1.15
      1.06
      75
      70
      20.05a
      17.52b
      [25]
      MeOH+CF
      disperse the NCs
      Cs0.05FA0.81MA0.14PbI2.55Br0.45 TiO2-Cl 22.3 1.189 80.6 21.4b [26]
      Boron element MAPbI3 B-TiO2 23.71
      22.96
      1.10
      1.08
      78.60
      76.60
      20.51a
      19.06b
      [27]
      EDTA CsFAPbI E-SnO2 24.57
      22.79
      1.11
      1.10
      79.2
      75.5
      21.60a
      18.93b
      [28]
      Synthesized N, S-RCQs Cs0.05FA0.81MA0.14PbI2.55Br0.45 SnO2-RCQs 24.1
      23.1
      1.14
      1.07
      82.9
      77.8
      22.77a
      19.15b
      [29]
      KOH/NaOH Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 SnO2/KOH
      SnO2/NaOH
      22.48
      22.26
      1.144
      1.095
      78
      78
      20.06a
      19.01b
      [30]
      TiAcac/ZrAcac/HfAcac

      MAPbI3 PCBM/ZrAcac/Ag 22.17
      20.03
      1.079
      1.048
      78.1
      59.1
      18.69a
      12.43b
      [32]
      Fullerene(C60) MAPbI3 ICBA/C60 15.7 0.97 80.1 12.2a [33]
      TBP+PbI2 FAxMA1–xPb(IyBr1–y)3 PbI2-doped Spiro 23.9
      22.7
      1.123
      1.077
      75.6
      71.8
      20.3a
      17.6b
      [35]
      LAD replace Li-TFSI/t-BP

      MAPbI3 LAD-doped Spiro 22.35
      22.34
      1.05
      1.02
      81
      78
      19.01a
      17.77b
      [36]
      V2O5 MAPbI3 V2O5/PEDOT 22.69
      18.86
      0.884
      0.896
      74.70
      74.08
      15a
      12.52b
      [38]
      GO solution (Highly concentrated
      graphene oxide)
      MAPb(IyBr1–y)3 PEDOT:GO 21.55
      19.63
      1.02
      0.97
      82.3
      78.53
      18.09a
      14.95b
      [39]
      NiOx/Spiro bilayers (FAPbI3)0.87(MAPbBr3)0.13 NiOx/Spiro 23.82
      23.02
      1.14
      1.10
      79.8
      78.2
      21.66a
      19.80b
      [40]
      NaCl or KCl Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 NiOx/MClM: Na or K 22.89
      22.65
      1.15
      1.07
      79.5
      79.5
      20.96a
      19.27b
      [41]
      Cu(ac)2 MAPbI3–xClx Cu-doped NiOx 22.84 ± 0.32
      23.53 ± 0.32
      1.06 ± 0.01
      1.10 ± 0.01
      59.68 ± 2.79
      70.04 ± 1.47
      14.47 ± 0.83b
      18.05 ± 0.58a
      [42]
      Thiophene or pyridine MAPbI3–xClx Perovskite/Thiophene or pyridine 21.3
      24.1
      20.7
      1.02
      1.05
      0.95
      68
      72
      68
      15.3(T)a1
      16.5(p)a2
      13.1b
      [45]
      PVP Poly(4-vinylpyridine) MAPbI3 Perovskite/PVP 22.0
      20.1
      1.05
      0.90
      66
      64
      15.1a
      11.6b
      [46]
      Lewis base BrPh-ThR and
      Lewis acid bis-PCBM
      (FAI)0.81(PbI2)0.85(MABr)0.15(PbBr2)0.15 BrPh-ThR-doped
      Perovskite/bis-PCBM
      23.93
      23.13
      1.12
      1.10
      78
      73
      21.7a
      19.3b
      [47]
      ITIC;DTS;DR3T;PCBM MAPbI3 Perovskite/DR3T 22.20 ± 0.68
      21.07 ± 0.87
      1.08 ± 0.02
      1.06 ± 0.02
      75.6 ± 1.07
      4.7 ± 1.6
      18.22 ± 0.65a
      16.66 ± 0.63b
      [48]
      PEAI

      FAMAPbI Perovskite/PEAI 24.9 1.16 81.4 23.56a [49]
      NMAI

      Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 Perovskite/NMAI 22.28
      22.54
      1.174
      1.092
      78.63
      77.58
      20.57a
      19.10b
      [50]
      GABr

      (FA0.95PbI2.95)0.85(MAPbBr3)0.15 Perovskite/GABr 22.50 ± 0.92
      22.56 ± 0.97
      1.20 ± 0.0
      21.10 ± 0.03
      77 ± 1
      78.5 ± 2
      20.79 ± 0.50a
      19.48 ± 0.85b
      [51]
      FAI

      MAPbI3 Perovskite/FAI 22.99
      22.36
      1.127
      1.126
      77.5
      75.5
      20.09a
      18.96b
      [52]
      LAIS

      Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 BDAI/Perovskite 22.59 1.21 81.63 22.31a [53]
      Residual amount of
      different PbI2
      FAMAPbI Perovskite/PbI2 23.69 1.13 80.61 21.52a [54]
      Residual amount of
      different PbI2
      FAMAPbI PbI2/Perovskite/PbI2 24.8
      24.1
      23.8
      1.15
      1.12
      1.04
      78.4
      80.1
      75.2
      22.3a1
      21.6a2
      18.8b
      [55]
      Cetyltrimethylammonium
      bromide (CTAB)

      FAMAPbI modulated perovskite films with
      ligand-modulation technology
      23.82
      23.83
      1.14
      1.10
      81.14
      78.54
      22.03a
      20.58b
      [56]
      BAI

      BAx(FA0.83Cs0.17)1–xPb(I0.6Br0.4)3 2D-3D 22.7
      19.8
      1.14
      1.14
      80
      75
      20.6a
      16.9b
      [58]
      BABr

      (FA0.83Cs0.17)Pb(I0.6Br0.4)3 3D/2D 19.3
      19.2
      1.31
      1.24
      78
      74
      19.8a
      17.5b
      [59]
      PEAI Cs0.1FA0.74MA0.13PbI2.48Br0.39 3D/2D 22.73
      21.81
      1.14
      1.098
      76.3
      77.9
      20.08a
      18.65b
      [60]
      PEAI MAPbI3 2D/3D/2D 23.77
      21.31
      0.94
      0.89
      81.95
      79.28
      18.37a
      15.10b
      [61]
      EAI, IAI, and GuaI FA0.93Cs0.07Pb (I0.92Br0.08)3 3D/2D(EAI) 24.14
      24.50
      1.12
      1.08
      81
      76
      22.40a
      20.52b
      [62]
      FEAI

      CsFAMAPbI 3D/2D(FEAI) 25.79
      25.47
      1.096
      1.045
      78.4
      77.5
      22.16a
      20.62b
      [63]
      HDAD+ Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 3D/2D (HDADI) 22.80
      22.88
      1.10
      1.09
      81
      77
      20.31a
      19.22b
      [64]
      tBBAI

      Cs0.05FA0.85MA0.10Pb(I0.97Br0.03)3 Perovskite/tBBAI 25.10
      24.79
      1.14
      21.091
      82.1
      78.5
      23.5a
      21.2b
      [65]
      Triphenylphosphine oxide (TPPO) and
      tribenzylphosphine oxide (TBPO)
      Cs0.1FA0.74MA0.13PbI2.48Br0.39 Perovskite/TPPO
      Perovskite/TBPO
      23.9 ± 0.25
      23.7 ± 0.31
      23.7 ± 0.21
      1.139 ± 0.00 6
      1.131 ± 0.004
      1.106 ± 0.013
      80 ± 1
      79 ± 1
      78 ± 2
      21.7 ± 0.2a1
      21.2 ± 0.2a2
      20.4 ± 0.3b
      [66]
      (1H, 1H, 2H, 2H-perfluorooctyl
      trichlorosilane)PFTS
      Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45 Perovskite/PFTS 23.03
      22.93
      1.176
      1.136
      78.80
      77.39
      21.34a
      20.16b
      [67]
      Theophylline, caffeine, and theobromine (FAPbI3)0.92(MAPbBr3)0.08 N-H and C=O Passivation defect 25.24
      24.78
      1.191
      1.164
      78.1
      72.9
      23.48a
      21.02b
      [68]
      注: a, 材料钝化; b.原始无钝化. 仅有一行参数的为只给出了最优钝化性能; 有三行参数的前两行分别是不同材料钝化结果.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

    • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福.基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 必威体育下载 , 2024, 73(7): 078401.doi:10.7498/aps.73.20231846
      [2] 王静, 高姗, 段香梅, 尹万健.钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 必威体育下载 , 2024, 73(6): 063101.doi:10.7498/aps.73.20231631
      [3] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪.溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 必威体育下载 , 2024, 73(6): 068801.doi:10.7498/aps.73.20231678
      [4] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰.采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 必威体育下载 , 2022, 71(2): 028101.doi:10.7498/aps.71.20211344
      [5] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪.钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 必威体育下载 , 2022, 71(16): 166801.doi:10.7498/aps.71.20220359
      [6] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟.醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 必威体育下载 , 2022, 71(1): 018802.doi:10.7498/aps.71.20211074
      [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英.低温制备SnO2电子传输层用于钙钛矿太阳能电池. 必威体育下载 , 2022, 71(11): 118801.doi:10.7498/aps.71.20211930
      [8] 林明月, 巨博, 李燕, 陈雪莲.2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能. 必威体育下载 , 2021, 70(12): 128803.doi:10.7498/aps.70.20202005
      [9] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰.采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211344
      [10] 颜佳豪, 陈思璇, 杨建斌, 董敬敬.吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 必威体育下载 , 2021, 70(20): 206801.doi:10.7498/aps.70.20210836
      [11] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌.基于三元非富勒烯体系的高效有机太阳能电池. 必威体育下载 , 2020, 69(19): 198801.doi:10.7498/aps.69.20200624
      [12] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖.钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 必威体育下载 , 2019, 68(2): 028101.doi:10.7498/aps.68.20181759
      [13] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强.n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 必威体育下载 , 2019, 68(15): 158803.doi:10.7498/aps.68.20190468
      [14] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生.高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 必威体育下载 , 2018, 67(15): 158801.doi:10.7498/aps.67.20172600
      [15] 范伟利, 杨宗林, 张振雲, 齐俊杰.高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 必威体育下载 , 2018, 67(22): 228801.doi:10.7498/aps.67.20181457
      [16] 柴磊, 钟敏.钙钛矿太阳能电池近期进展. 必威体育下载 , 2016, 65(23): 237902.doi:10.7498/aps.65.237902
      [17] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新.影响杂化钙钛矿太阳能电池稳定性的因素探讨. 必威体育下载 , 2015, 64(3): 038803.doi:10.7498/aps.64.038803
      [18] 杨旭东, 陈汉, 毕恩兵, 韩礼元.高效率钙钛矿太阳电池发展中的关键问题. 必威体育下载 , 2015, 64(3): 038404.doi:10.7498/aps.64.038404
      [19] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿.石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 必威体育下载 , 2015, 64(3): 038103.doi:10.7498/aps.64.038103
      [20] 刘红军, 陈国夫, 赵卫, 王屹山.高质量高效率高稳定性参量放大光产生的研究. 必威体育下载 , 2004, 53(1): 105-113.doi:10.7498/aps.53.105
    计量
    • 文章访问数:16840
    • PDF下载量:365
    • 被引次数:0
    出版历程
    • 收稿日期:2020-07-29
    • 修回日期:2020-08-30
    • 上网日期:2021-01-07
    • 刊出日期:2021-01-20

      返回文章
      返回
        Baidu
        map