搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

强晓斌, 卢海舟

Quantum transport in topological matters under magnetic fields

Qiang Xiao-Bin, Lu Hai-Zhou
PDF
HTML
导出引用
  • 拓扑物态包括拓扑绝缘体、拓扑半金属以及拓扑超导体. 拓扑物态奇异的能带结构以及受拓扑保护的新奇表面态, 使其具有了独特的输运性质. 拓扑半金属作为物质的一种三维拓扑态具有无能隙的准粒子激发, 根据导带和价带的接触类型分为外尔半金属、狄拉克半金属和节线半金属. 本文以拓扑半金属为主回顾了在磁场下拓扑物态中量子输运的最新工作, 在不同的磁场范围内分别给出了描述拓扑物态输运行为的主要理论.
    Topological matters include topological insulator, topological semimetal and topological superconductor. The topological semimetals are three-dimensional topological states of matter with gapless electronic excitations. They are simply divided into Weyl, Dirac, and nodal-line semimetals according to the touch type of the conduction band and the valence band. Their characteristic electronic structures lead to topologically protected surface states at certain surfaces, corresponding to the novel transport properties. We review our recent works on quantum transport mainly in topological semimetals. The main theories describing the transport behavior of topological matters are given in different magnetic regions.
        通信作者:卢海舟,luhz@sustech.edu.cn
        作者简介:
        卢海舟, 2007年在清华大学高等研究院获博士学位. 同年赴香港大学做博士后研究, 2012年晋升为研究助理教授. 2015年加入南方科技大学, 现为物理系和深圳量子科学与工程研究院教授. 主要从事凝聚态物理, 特别是量子输运理论的研究. 研究兴趣集中在利用量子场论方法研究拓扑和新奇材料中的量子态和量子输运. 系统地研究了二维和三维狄拉克电子的量子输运行为, 并应用于拓扑绝缘体/半金属/超导体, 二维层状材料等. 研究过的物理效应包括弱局域化、奇异负磁阻、量子振荡、强磁场量子极限、各类霍尔效应等, 在拓扑半金属中提出了三维量子霍尔效应的一种基于费米弧的新机制, 多个理论工作被实验广泛支持和应用
      • 基金项目:国家重点基础研究发展计划(批准号: 2016YFA0301700)、国家自然科学基金(批准号: 11925402)、广东省自然科学基金(批准号: 2016ZT06D348)和深圳市科学技术创新委员会(批准号: ZDSYS20170303165926217, JCYJ20170412152620376)资助的课题
        Corresponding author:Lu Hai-Zhou,luhz@sustech.edu.cn
      • Funds:Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant No. 11925402), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016ZT06D348), and the Science and Technology Innovation Commission of Shenzhen, China (Grant Nos. ZDSYS20170303165926217, JCYJ20170412152620376)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

      [223]

      [224]

      [225]

      [226]

      [227]

      [228]

      [229]

      [230]

      [231]

      [232]

      [233]

      [234]

      [235]

      [236]

      [237]

      [238]

      [239]

      [240]

      [241]

      [242]

      [243]

      [244]

      [245]

      [246]

      [247]

      [248]

      [249]

      [250]

      [251]

      [252]

      [253]

      [254]

      [255]

      [256]

      [257]

      [258]

      [259]

      [260]

      [261]

      [262]

      [263]

      [264]

      [265]

      [266]

      [267]

      [268]

      [269]

      [270]

      [271]

      [272]

      [273]

      [274]

      [275]

      [276]

      [277]

      [278]

      [279]

      [280]

      [281]

      [282]

      [283]

      [284]

      [285]

      [286]

      [287]

      [288]

      [289]

      [290]

      [291]

      [292]

      [293]

      [294]

      [295]

      [296]

      [297]

      [298]

      [299]

      [300]

      [301]

      [302]

      [303]

      [304]

      [305]

      [306]

      [307]

      [308]

      [309]

      [310]

      [311]

      [312]

      [313]

      [314]

      [315]

      [316]

      [317]

      [318]

      [319]

      [320]

      [321]

      [322]

      [323]

      [324]

      [325]

      [326]

      [327]

      [328]

      [329]

      [330]

      [331]

      [332]

      [333]

      [334]

      [335]

      [336]

      [337]

      [338]

      [339]

      [340]

      [341]

      [342]

      [343]

      [344]

      [345]

      [346]

      [347]

      [348]

      [349]

      [350]

      [351]

      [352]

      [353]

      [354]

      [355]

      [356]

      [357]

      [358]

      [359]

      [360]

      [361]

      [362]

      [363]

      [364]

      [365]

      [366]

      [367]

      [368]

      [369]

      [370]

      [371]

      [372]

      [373]

      [374]

      [375]

      [376]

      [377]

      [378]

      [379]

      [380]

      [381]

      [382]

      [383]

      [384]

      [385]

      [386]

      [387]

      [388]

      [389]

      [390]

      [391]

      [392]

      [393]

      [394]

      [395]

      [396]

      [397]

      [398]

      [399]

      [400]

      [401]

      [402]

      [403]

      [404]

      [405]

      [406]

      [407]

      [408]

      [409]

      [410]

      [411]

      [412]

      [413]

      [414]

      [415]

      [416]

      [417]

      [418]

      [419]

      [420]

    • 正交 幺正
      时间反演 ×
      自旋旋转 × ×
      WL/WAL WL WAL ×
      下载: 导出CSV

      系统 电子载流子 空穴载流子
      2D抛物线 –1/2 1/2
      3D抛物线 –5/8 5/8
      2D线性 0 0
      3D线性 –1/8 1/8
      磁场$B_z$中的节线 $-5/8(\alpha), 5/8(\beta)$ $5/8(\alpha), -5/8(\beta)$
      磁场$B_{/\!/}$中的节线 $-5/8(\gamma), 1/8(\delta)$ $5/8(\gamma), -1/8(\delta)$
      下载: 导出CSV

      文献 $\phi_{\rm{exp}}$ $\phi_{\rm{Weyl}}$ $\phi_{\rm{Dirac}}$
      [50] 0.06 — 0.08 –0.94 — –0.92 –5/8
      [51] 0.11 — 0.38 –0.89 — –0.62 –5/8
      [54] 0.04 –0.96 –5/8
      下载: 导出CSV

      贝里相位 最大/
      最小
      电子 空穴
      $\alpha$ 0 最大 $ -1/2+0-1/8 = -5/8 $ +5/8
      $\beta$ 0 最小 $-1/2+0+1/8 = -3/8 \leftrightarrow 5/8$ –5/8
      $\gamma$ 0 最大 $ -1/2+0 - 1/8 = - 5/8 $ +5/8
      δ π 最小 $-1/2+\pi/2\pi+1/8 = 1/8$ –1/8
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

      [223]

      [224]

      [225]

      [226]

      [227]

      [228]

      [229]

      [230]

      [231]

      [232]

      [233]

      [234]

      [235]

      [236]

      [237]

      [238]

      [239]

      [240]

      [241]

      [242]

      [243]

      [244]

      [245]

      [246]

      [247]

      [248]

      [249]

      [250]

      [251]

      [252]

      [253]

      [254]

      [255]

      [256]

      [257]

      [258]

      [259]

      [260]

      [261]

      [262]

      [263]

      [264]

      [265]

      [266]

      [267]

      [268]

      [269]

      [270]

      [271]

      [272]

      [273]

      [274]

      [275]

      [276]

      [277]

      [278]

      [279]

      [280]

      [281]

      [282]

      [283]

      [284]

      [285]

      [286]

      [287]

      [288]

      [289]

      [290]

      [291]

      [292]

      [293]

      [294]

      [295]

      [296]

      [297]

      [298]

      [299]

      [300]

      [301]

      [302]

      [303]

      [304]

      [305]

      [306]

      [307]

      [308]

      [309]

      [310]

      [311]

      [312]

      [313]

      [314]

      [315]

      [316]

      [317]

      [318]

      [319]

      [320]

      [321]

      [322]

      [323]

      [324]

      [325]

      [326]

      [327]

      [328]

      [329]

      [330]

      [331]

      [332]

      [333]

      [334]

      [335]

      [336]

      [337]

      [338]

      [339]

      [340]

      [341]

      [342]

      [343]

      [344]

      [345]

      [346]

      [347]

      [348]

      [349]

      [350]

      [351]

      [352]

      [353]

      [354]

      [355]

      [356]

      [357]

      [358]

      [359]

      [360]

      [361]

      [362]

      [363]

      [364]

      [365]

      [366]

      [367]

      [368]

      [369]

      [370]

      [371]

      [372]

      [373]

      [374]

      [375]

      [376]

      [377]

      [378]

      [379]

      [380]

      [381]

      [382]

      [383]

      [384]

      [385]

      [386]

      [387]

      [388]

      [389]

      [390]

      [391]

      [392]

      [393]

      [394]

      [395]

      [396]

      [397]

      [398]

      [399]

      [400]

      [401]

      [402]

      [403]

      [404]

      [405]

      [406]

      [407]

      [408]

      [409]

      [410]

      [411]

      [412]

      [413]

      [414]

      [415]

      [416]

      [417]

      [418]

      [419]

      [420]

    • [1] 朱庞栋, 王长昊, 王如志.节线半金属AlB2水环境下发生吸附后拓扑表面态变化. 必威体育下载 , 2024, 73(12): 127101.doi:10.7498/aps.73.20240404
      [2] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏.磁子霍尔效应. 必威体育下载 , 2024, 73(1): 017501.doi:10.7498/aps.73.20231589
      [3] 初纯光, 王安琦, 廖志敏.拓扑半金属-超导体异质结的约瑟夫森效应. 必威体育下载 , 2023, 72(8): 087401.doi:10.7498/aps.72.20230397
      [4] 顾开元, 罗天创, 葛军, 王健.拓扑材料中的超导. 必威体育下载 , 2020, 69(2): 020301.doi:10.7498/aps.69.20191627
      [5] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗.高超声速磁流体力学控制霍尔效应影响. 必威体育下载 , 2020, 69(21): 214703.doi:10.7498/aps.69.20200630
      [6] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民.三重简并拓扑半金属磷化钼的时间分辨超快动力学. 必威体育下载 , 2020, 69(7): 077801.doi:10.7498/aps.69.20191816
      [7] 何斌, 何雄, 刘国强, 朱璨, 王嘉赋, 孙志刚.SnSe2的忆阻及磁阻效应. 必威体育下载 , 2020, 69(11): 117301.doi:10.7498/aps.69.20200160
      [8] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林.拓扑半金属材料角分辨光电子能谱研究进展. 必威体育下载 , 2019, 68(22): 227102.doi:10.7498/aps.68.20191544
      [9] 韦博元, 步海军, 张帅, 宋凤麒.拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 必威体育下载 , 2019, 68(22): 227203.doi:10.7498/aps.68.20191501
      [10] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国.拓扑半金属材料的单晶生长研究进展. 必威体育下载 , 2018, 67(12): 128102.doi:10.7498/aps.67.20180796
      [11] 李开, 柳军, 刘伟强.高超声速飞行器磁控热防护霍尔电场数值方法研究. 必威体育下载 , 2017, 66(8): 084702.doi:10.7498/aps.66.084702
      [12] 李开, 柳军, 刘伟强.基于变均布霍尔系数的磁控热防护系统霍尔效应影响. 必威体育下载 , 2017, 66(5): 054701.doi:10.7498/aps.66.054701
      [13] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤.在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 必威体育下载 , 2014, 63(2): 027303.doi:10.7498/aps.63.027303
      [14] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy.高迁移率InGaAs/InP量子阱中的有效g因子. 必威体育下载 , 2012, 61(12): 127102.doi:10.7498/aps.61.127102
      [15] 侯碧辉, 刘凤艳, 焦彬, 岳明.纳米金属Tm的电子浓度研究. 必威体育下载 , 2012, 61(7): 077302.doi:10.7498/aps.61.077302
      [16] 王敬平, 孟 健.磁场下合成Fe3O4粉体的隧道磁阻. 必威体育下载 , 2008, 57(2): 1197-1201.doi:10.7498/aps.57.1197
      [17] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲.Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 必威体育下载 , 2006, 55(5): 2498-2503.doi:10.7498/aps.55.2498
      [18] 陈卫平, 冯尚申, 焦正宽.Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 必威体育下载 , 2003, 52(12): 3176-3180.doi:10.7498/aps.52.3176
      [19] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆.MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究. 必威体育下载 , 2001, 50(10): 2044-2048.doi:10.7498/aps.50.2044
      [20] 郭忠诚, 郑萍, 王楠林, 陈兆甲, Y. MAENO, Z. Q. MAO.Sr2RuO4正常态的c方向的磁阻的研究. 必威体育下载 , 2001, 50(9): 1824-1828.doi:10.7498/aps.50.1824
    计量
    • 文章访问数:15957
    • PDF下载量:1121
    • 被引次数:0
    出版历程
    • 收稿日期:2020-06-15
    • 修回日期:2020-07-29
    • 上网日期:2021-01-15
    • 刊出日期:2021-01-20

      返回文章
      返回
        Baidu
        map