搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配

Progress of silicon photonic devices-based Fano resonance

Lu Li-Dan, Zhu Lian-Qing, Zeng Zhou-Mo, Cui Yi-Ping, Zhang Dong-Liang, Yuan Pei
PDF
HTML
导出引用
  • 硅基光子技术的发展为新型微纳光学功能器件和片上系统提供了高可靠、高精度的实现手段. 采用硅基光子技术构建的具有连续(准连续)模式微腔与离散模式的微腔耦合产生的Fano共振现象得到了广泛关注. Fano共振光谱在共振波长附近具有不对称且尖锐的谐振峰, 传输光的强度在共振波长附近从0突变为1, 该机制可显著提高硅基光开关、探测器、传感器, 以及光非互易性全光信号处理的性能. 本综述分析了Fano共振的一般数学表述, 总结了当前硅基光子微腔耦合产生Fano共振的理论模型研究现状, 讨论了不同类型硅光器件实现Fano共振的方法, 比较各种方案优劣及适用场合, 梳理了Fano共振在全光信号处理方面的应用研究情况. 最后探讨存在的一些问题及未来可能的相关研究方向.
    The development of silicon photonics provides a method of implementing high reliability and high precision for new micro-nano optical functional devices and system-on-chips. The asymmetric Fano resonance phenomenon caused by the mutual coupling of optical resonant cavities is extensively studied. The spectrum of Fano resonance has an asymmetric and sharp slope near the resonance wavelength. The wavelength range for tuning the transmission from zero to one is much narrow in Fano lineshape, therefore improving the figure of merits of power consumption, sensing sensitivity, and extinction ratio. The mechanism can significantly improve silicon-based optical switches, detectors, sensors, and optical non-reciprocal all-optical signal processing. Therefore, the mechanism and method of generating the Fano resonance, the applications of silicon-based photonic technology, and the physical meaning of the Fano formula’s parameters are discussed in detail. It can be concluded that the primary condition for creating the Fano resonance is that the dual-cavity coupling is a weak coupling, and the detuning of resonance frequency of the two cavities partly determines Fano resonance lineshapes. Furthermore, the electromagnetically induced transparency is generated when the frequency detuning is zero. The methods of generating Fano resonance by using different types of devices in silicon photonics (besides the two-dimensional photonic crystals) and the corresponding evolutions of Fano resonance are introduced and categorized, including simple photonic crystal nanobeam, micro-ring resonator cavity without sacrificing the compact footprint, micro-ring resonator coupling with other structures (mainly double micro-ring resonators), adjustable Mach-Zehnder interferometer, and others such as slit waveguide and self-coupling waveguide. Then, we explain the all-optical signal processing based on the Fano resonance phenomenon, and also discuss the differences among the design concepts of Fano resonance in optimizing optical switches, modulators, optical sensing, and optical non-reciprocity. Finally, the future development direction is discussed from the perspective of improving Fano resonance parameters. The topology structure can improve the robustness of the Fano resonance spectrum; the bound states in continuous mode can increase the slope of Fano spectrum; the Fano resonance can expand the bandwidth of resonance spectrum by combining other material systems besides silicon photonics; the multi-mode Fano resonances can enhance the capability of the spectral multiplexing; the reverse design methods can improve the performance of the device. We believe that this review can provide an excellent reference for researchers who are studying the silicon photonic devices.
        通信作者:祝连庆,lqzhu_bistu@sina.com; 曾周末,zhmzeng@tju.edu.cn;
      • 基金项目:高等学校学科创新引智计划(批准号: D17021)、北京市科技新星计划(批准号: Z191100001119052)和北京实验室纵向课题(批准号: GXKF2019002)资助的课题
        Corresponding author:Zhu Lian-Qing,lqzhu_bistu@sina.com; Zeng Zhou-Mo,zhmzeng@tju.edu.cn;
      • Funds:Project supported by the 111 Project of China (Grant No. D17021), the Beijing New-star Plan of Science and Technology of China (Grant No. Z191100001119052), and the Vertical Subject of Beijing Laboratory of China (Grant No. GXKF2019002)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

    • 结构 尺寸/(μm × μm) 消光比/dB 斜率/(dB·nm–1) 应用 文献
      PCNC结合光纤 ~13.2 × 0.47 17 [38]
      F-P 侧边耦合 PCNC ~6 × 0.45 7.3 5.3 [39]
      F-P 侧边耦合 PCNC ~18 × 0.72 14—18 [37]
      F-P 侧边耦合 PCNC ~10.5 × 1.5 22 [40]
      F-P 侧边耦合狭缝 PCNC ~10.5 × 1.5 24 折射率灵敏度778 nm/RIU [41]
      双 PCNs ~5.18 × 0.74 20 [43]
      交叉耦合四端口PCNC ~4 16 光开关 [45]
      下载: 导出CSV

      结构 尺寸/(μm×μm) 消光比/dB 斜率 性能 文献
      总线错位波导耦合MRR ~20×30 30 葡萄糖灵敏度24 mg/dl [46]
      多模总线波导耦合MRR ~1020×230 6 27.1/nm [47]
      端面反射总线波导耦合MRR ~22×10000 30 折射率探测极限~10–8RIU [48]
      MRR耦合反馈总线波导 ~20×350 30.8 226.5 dB/nm [49,50]
      MRR耦合相移光栅 ~60×60 20 [51]
      MRR耦合由两个布拉格
      光栅形成的F-P腔
      ~17×140 22.54 250.4 dB/nm [52]
      MRR耦合由光子晶体形成的F-P腔 ~6×10 23 折射率灵敏度~1.76 × 10–4 [56]
      亚波长光栅耦合MRR ~6×10 12 折射率灵敏度366 nm/RIU [54]
      狭缝F-P耦合狭缝MRR ~4×10 20 折射率灵敏度297.13 nm/RIU [55]
      PCNC侧耦合结合Kerr
      非线性材料的PCN
      ~16 关开关功耗0.76 pJ,
      切换时间0.707 ps
      [42]
      下载: 导出CSV

      结构 尺寸/(μm×μm) 消光比/dB 斜率 性能 文献
      MRR嵌入跑道微环 ~5×40 20 [59]
      热调MRR嵌入跑道微环 ~5 × 40 40 35—93 dB/nm [60]
      亚波长光栅式MRR嵌入跑道微环 ~20×100 21.53 折射率灵敏度500 nm/RIU [68]
      Sagnac形成的双F-P耦合 ~100×300 20 770 dB/pm [30]
      Sagnac形成的F-P耦合MRR ~25×30 23.22 252 dB/nm [75]
      下载: 导出CSV

      结构 尺寸/(μm×μm) 消光比/dB 斜率/(dB·nm–1) 应用 文献
      多模MZI耦合MRR ~65×85 33 113 模式开关 [82]
      双总线耦合交叉MRR形成的等效MZI 光开关 [86]
      MRR结合“十”交叉波导作为MZI的干涉臂 ~100×370 20 [87]
      MRR的两总线波导反馈形成MZI ~390×850 30.2 41 [88]
      双MRR辅助双MZI 56.8 3388.1 [22]
      下载: 导出CSV

      方法 尺寸 消光比 斜率 工艺要求 应用
      PCNC 适中 光开关/传感
      MRR 适中 一般 传感/滤波器
      MZI 一般 调制器/隔离器
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

    • [1] 陈召, 马昕新, 李童, 王艺霖.耦合谐振系统中基于Fano共振的光学压力传感器. 必威体育下载 , 2024, 73(8): 084205.doi:10.7498/aps.73.20232025
      [2] 刘宁, 刘肯, 朱志宏.集成二维材料非线性光学特性研究进展. 必威体育下载 , 2023, 72(17): 174202.doi:10.7498/aps.72.20230729
      [3] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊.劈裂环-盘二聚体结构的多重Fano共振. 必威体育下载 , 2022, 71(2): 027802.doi:10.7498/aps.71.20210855
      [4] 杨其利, 张兴坊.劈裂环-盘二聚体结构的多重Fano共振研究. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20210855
      [5] 朱一帆, 耿滔.谐振腔内的高质量圆对称艾里光束的产生方法. 必威体育下载 , 2020, 69(1): 014205.doi:10.7498/aps.69.20191088
      [6] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全.同心椭圆柱-纳米管结构的双重Fano共振研究. 必威体育下载 , 2019, 68(6): 067301.doi:10.7498/aps.68.20182249
      [7] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊.对称纳米棒三聚体结构的Fano共振特性研究. 必威体育下载 , 2019, 68(19): 197801.doi:10.7498/aps.68.20190978
      [8] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华.含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性. 必威体育下载 , 2019, 68(10): 107302.doi:10.7498/aps.68.20181985
      [9] 涂鑫, 陈震旻, 付红岩.硅基光波导开关技术综述. 必威体育下载 , 2019, 68(10): 104210.doi:10.7498/aps.68.20190011
      [10] 梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒.THz谐振腔型石墨烯光电探测器的设计. 必威体育下载 , 2016, 65(16): 168101.doi:10.7498/aps.65.168101
      [11] 李培, 王辅忠, 张丽珠, 张光璐.左手介质对谐振腔谐振频率的影响. 必威体育下载 , 2015, 64(12): 124103.doi:10.7498/aps.64.124103
      [12] 庄煜阳, 周雯, 季珂, 陈鹤鸣.一种双反射壁型二维光子晶体窄带滤波器. 必威体育下载 , 2015, 64(22): 224202.doi:10.7498/aps.64.224202
      [13] 肖金标, 罗辉, 徐银, 孙小菡.硅基槽式微环谐振腔型偏振解复用器全矢量分析. 必威体育下载 , 2015, 64(19): 194207.doi:10.7498/aps.64.194207
      [14] 周培基, 李智勇, 俞育德, 余金中.硅基光子集成研究进展. 必威体育下载 , 2014, 63(10): 104218.doi:10.7498/aps.63.104218
      [15] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德.硅基光栅耦合器的研究进展. 必威体育下载 , 2013, 62(18): 184214.doi:10.7498/aps.62.184214
      [16] 雷朝军, 喻胜, 李宏福, 牛新建, 刘迎辉, 候慎勇, 张天钟.缓变回旋管谐振腔研究. 必威体育下载 , 2012, 61(18): 180202.doi:10.7498/aps.61.180202
      [17] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华.基于圆柱谐振腔的高功率微波脉冲压缩系统. 必威体育下载 , 2011, 60(4): 048404.doi:10.7498/aps.60.048404
      [18] 柏宁丰, 洪玮, 孙小菡.复合缺陷型电磁帯隙谐振腔. 必威体育下载 , 2011, 60(1): 018401.doi:10.7498/aps.60.018401
      [19] 刘畅, 罗尧天, 唐昌建, 刘濮鲲.回旋管光子带隙谐振腔冷腔电磁模式分析. 必威体育下载 , 2009, 58(12): 8174-8179.doi:10.7498/aps.58.8174
      [20] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆.有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 必威体育下载 , 2009, 58(11): 7845-7851.doi:10.7498/aps.58.7845
    计量
    • 文章访问数:16039
    • PDF下载量:883
    • 被引次数:0
    出版历程
    • 收稿日期:2020-04-14
    • 修回日期:2020-09-24
    • 上网日期:2021-01-16
    • 刊出日期:2021-02-05

      返回文章
      返回
        Baidu
        map