搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    陈炜, 郭媛, 敬世伟

    General image encryption algorithm based on deep learning compressed sensing and compound chaotic system

    Chen Wei, Guo Yuan, Jing Shi-Wei
    PDF
    HTML
    导出引用
    • 提出一种适用于灰度图像与RGB格式彩色图像的通用图像加密算法. 利用双线性插值Bilinear与卷积神经网络对图像进行压缩, 再使用二维云模型与Logistic组成的复合混沌系统对压缩图像加解密(滑动置乱与矢量分解), 最后对解密图像进行重构. 重构网络中, 由卷积神经网络与双线性插值Bilinear主要负责重构轮廓信息, 全连接层主要负责重构颜色信息. 实验结果表明, 该在数据处理质量和计算量上有着很大优势. 由于复合混沌系统有着足够大的密钥空间且将明文哈希值与密钥关联, 可实现一图一密的加密效果, 能有效抵抗暴力攻击与选择明文攻击, 与对比文献相比, 相关系数更接近理想值且信息熵与明文敏感性指标也都在临界值范围内, 其加密算法有着更高的安全性.
      Many image compression and encryption algorithms based on traditional compressed sensing and chaotic systems are time-consuming, have low reconstruction quality, and are suitable only for grayscale images. In this paper, we propose a general image compression encryption algorithm based on a deep learning compressed sensing and compound chaotic system, which is suitable for grayscale images and RGB format color images. Color images can be directly compressed and encrypted, but grayscale images need copying from 1 channel to 3 channels. First, the original image is divided into multiple 3 × 33 × 33 non-overlapping image blocks and the bilinear interpolation Bilinear and convolutional neural network are used to compress the image, so that the compression network has no restriction on the sampling rate and can obtain high-quality compression of image. Then a composite chaotic system composed of a two-dimensional cloud model and Logistic is used to encrypt and decrypt the compressed image (sliding scrambling and vector decomposition), and finally the decrypted image is reconstructed. In the reconstruction network, the convolutional neural network and bilinear interpolation Bilinear are mainly responsible for reconstructing the contour structure information, and the fully connected layer is mainly responsible for reconstructing and combining the color information to reconstruct a high-quality image. For grayscale images, we also need to calculate the average value of the corresponding positions of the 3 channels of the reconstructed image, and change the 3 channels into 1 channel. The experimental results show that the general image encryption algorithm based on deep learning compressed sensing and compound chaos system has great advantages in data processing quality and computational complexity. Although in the network the color images are used for training, the quality of grayscale image reconstruction is still better than that of other algorithms. The image encryption algorithm has a large enough key space and associates the plaintext hash value with the key, which realizes the encryption effect of one image corresponding to one key, thus being able to effectively resist brute force attacks and selective plaintext attacks. Compared with it in the comparison literature, the correlation coefficient is close to an ideal value, and the information entropy and the clear text sensitivity index are also within a critical range, which enhances the confidentiality of the image.
          通信作者:郭媛,guoyuan171@126.com
        • 基金项目:国家自然科学基金(批准号: 61872204)、黑龙江省自然科学基金(批准号: F2017029)、黑龙江省省属高等学校基本科研业务费(批准号: 135109236)和研究生创新研究项目(批准号: YJSCX2019042)资助的课题
          Corresponding author:Guo Yuan,guoyuan171@126.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 61872204), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2017029), the Fundamental Research Funds for the Higher Education Institutions of Heilongjiang Province, China (Grant No. 135109236), and the Graduate Innovation Research Project, China (Grant No. YJSCX2019042)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

      • 采样率 算法 Lena Monarch Flinstones 平均PSNR
        0.25 TVAL3 28.67 27.77 24.05 27.84
        NLR-CS 29.39 25.91 22.43 28.05
        D-AMP 28.00 26.39 25.02 28.17
        ReconNet 26.54 24.31 22.45 25.54
        DR2-Net 29.42 27.95 26.19 28.66
        MSRNet 30.21 28.90 26.67 29.48
        FCLBCNN 31.09 29.97 27.57 29.71
        0.10 TVAL3 24.16 21.16 18.88 22.84
        NLR-CS 15.30 14.59 12.18 14.19
        D-AMP 22.51 19.00 16.94 21.14
        ReconNet 23.83 21.10 18.92 22.68
        DR2-Net 25.39 23.10 21.09 24.32
        MSRNet 26.28 23.98 21.72 25.16
        FCLBCNN 26.93 24.58 22.08 25.41
        0.04 TVAL3 19.46 16.73 14.88 18.39
        NLR-CS 11.61 11.62 8.96 10.58
        D-AMP 16.52 14.57 12.93 15.49
        ReconNet 21.28 18.19 16.30 19.99
        DR2-Net 22.13 18.93 16.93 20.80
        MSRNet 22.76 19.26 17.28 21.41
        FCLBCNN 23.33 19.59 17.17 21.51
        0.01 TVAL3 11.87 11.09 9.75 11.31
        NLR-CS 5.95 6.38 4.45 5.30
        D-AMP 5.73 6.20 4.33 5.19
        ReconNet 17.87 15.39 13.96 17.27
        DR2-Net 17.97 15.33 14.01 17.44
        MSRNet 18.06 15.41 13.83 17.54
        FCLBCNN 18.12 15.63 13.90 17.62
        下载: 导出CSV

        算法 MR= 0.08 MR= 0.10 MR= 0.18 MR= 0.25 MR= 0.53
        PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
        ReconNet 23.28 0.6121 25.48 0.7241
        DR2-Net 24.26 0.6603 27.56 0.7961
        MSRNet 24.73 0.6837 27.93 0.8121
        FCLBCNN (gray) 24.83 0.7056 28.19 0.8400 32.87 0.9392
        FCLBCNN (color) 27.94 0.8252 32.07 0.9279
        下载: 导出CSV

        原图 采样率 压缩图像 置乱图像 密文图像 重构图像 PSNR SSIM
        0.53 36.4387 0.9715
        0.18 32.5516 0.9456
        下载: 导出CSV

        测试图像 方向 明文(gray) 密文
        本文(gray) 本文(color) 文献[20] 文献[21]
        Lena 水平 0.9396 0.0010 –0.0024 –0.0048 0.0011
        竖直 0.9639 –0.0066 0.0012 –0.0112 0.0098
        斜线 0.9189 –0.0039 0.0035 –0.0045 –0.0227
        Peppers 水平 0.9769 –0.0004 –0.0023 –0.0056 0.0071
        竖直 0.9772 0.0089 0.0063 –0.0162 –0.0065
        斜线 0.9625 –0.0077 0.0004 –0.0113 –0.0165
        平均值 水平 0.0003 –0.0024 –0.0052 0.0041
        竖直 0.0012 0.0038 –0.0137 0.0017
        斜线 –0.0058 0.0020 –0.0079 –0.0196
        下载: 导出CSV

        测试图像 明文(gray) 密文
        本文(gary) 本文(color) 文献[12]
        Lena 7.3035 7.9949 7.9944 7.9544
        Peppers 7.4344 7.9956 7.9952 7.9633
        下载: 导出CSV

        测试图像 局部信息熵(gray/color) 临界值
        $\begin{array}{l} u_{0.05}^{* - } = 7.9019 \\ u_{0.05}^{* + } = 7.9030 \end{array}$ $\begin{array}{l} u_{0.01}^{* - } = 7.9017 \\ u_{0.01}^{* + } = 7.9032 \end{array}$ $\begin{array}{l} u_{0.001}^{* - } = 7.9015 \\ u_{0.001}^{* + } = 7.9034 \end{array}$
        Lena 7.9024/7.9027 Pass Pass Pass
        Peppers 7.9027/7.9023 Pass Pass Pass
        下载: 导出CSV

        测试图像 NPCR (gray/color) NPCR理论临界值
        $N_{0.05}^* = 99.5693\% $ $N_{0.01}^* = 99.5527\% $ $N_{0.001}^* = 99.5341\% $
        Lena 0.9960/0.9961 Pass Pass Pass
        Lena[12] 0.9954/— Fail Fail Pass
        Lena[20] 0.9962/— Pass Pass Pass
        Peppers 0.9959/0.9957 Pass Pass Pass
        Peppers[12] 0.9944/— Fail Fail Fail
        Peppers[20] 0.9963/— Pass Pass Pass
        下载: 导出CSV

        测试图像 UACI (gray/color) UACI理论临界值
        $\begin{array}{l} u_{0.05}^{* - } = 33.2824\% \\ u_{0.05}^{* + } = 33.6447\% \end{array}$ $\begin{array}{l} u_{0.01}^{* - } = 33.2255\% \\ u_{0.01}^{* + } = 33.7016\% \end{array}$ $\begin{array}{l} u_{0.001}^{* - } = 33.1594\% \\ u_{0.001}^{* + } = 33.7677\% \end{array}$
        Lena 0.3352/0.3357 Pass Pass Pass
        Lena[12] 0.3303/— Fail Fail Fail
        Lena[20] 0.3370/— Fail Pass Pass
        Peppers 0.3333/0.3331 Pass Pass Pass
        Peppers[12] 0.3305/— Fail Fail Fail
        Peppers[20] 0.3369/— Fail Pass Pass
        下载: 导出CSV

        图像大小 压缩重构(gray/color) 加解密(gray/color) 总时间(gray/color) 编程工具 平台
        256 × 256 0.21/0.20 0.66/0.65 0.87/0.85 Pycharm + Pytorch i5-8500 CPU
        0.93/2.81 0.93/2.81
        512 × 512 0.91/0.89 2.51/2.51 3.42/3.40
        3.89/11.96 3.89/11.96
        1024 × 1024 4.81/4.62 9.40/9.42 14.21/14.04
        15.84/48.51 15.84/48.51
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

      • [1] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚.基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 必威体育下载 , 2024, 73(10): 104202.doi:10.7498/aps.73.20231902
        [2] 刘鸿江, 刘逸飞, 谷付星.基于深度学习的微纳光纤自动制备系统. 必威体育下载 , 2024, 73(10): 104207.doi:10.7498/aps.73.20240171
        [3] 欧秀娟, 肖奕.RNA扭转角预测的深度学习方法. 必威体育下载 , 2023, 72(24): 248703.doi:10.7498/aps.72.20231069
        [4] 孙涛, 袁健美.基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 必威体育下载 , 2023, 72(2): 028901.doi:10.7498/aps.72.20221374
        [5] 战庆亮, 葛耀君, 白春锦.基于深度学习的流场时程特征提取模型. 必威体育下载 , 2022, 71(7): 074701.doi:10.7498/aps.71.20211373
        [6] 曹海燕, 叶震宇.基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 必威体育下载 , 2022, 71(5): 050101.doi:10.7498/aps.71.20211504
        [7] 张瑶, 张云波, 陈立.基于深度学习的光学表面杂质检测. 必威体育下载 , 2021, 70(16): 168702.doi:10.7498/aps.70.20210403
        [8] 凡洪剑, 李江, 王丽华, 樊春海, 柳华杰.基于DNA折纸模板的铁原子阵列构建及其信息加密应用. 必威体育下载 , 2021, 70(6): 068702.doi:10.7498/aps.70.20201438
        [9] 干红平, 张涛, 花燚, 舒君, 何立军.基于双极性混沌序列的托普利兹块状感知矩阵. 必威体育下载 , 2021, 70(3): 038402.doi:10.7498/aps.70.20201475
        [10] 曹海燕, 叶震宇.基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211504
        [11] 赵智鹏, 周双, 王兴元.基于深度学习的新混沌信号及其在图像加密中的应用. 必威体育下载 , 2021, 70(23): 230502.doi:10.7498/aps.70.20210561
        [12] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋.基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 必威体育下载 , 2021, 70(14): 144202.doi:10.7498/aps.70.20202075
        [13] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平.基于多模光纤散斑的压缩感知在光学图像加密中的应用. 必威体育下载 , 2020, 69(3): 034203.doi:10.7498/aps.69.20191143
        [14] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪.基于深度学习的联合变换相关器光学图像加密系统去噪方法. 必威体育下载 , 2020, 69(24): 244204.doi:10.7498/aps.69.20200805
        [15] 石航, 王丽丹.一种基于压缩感知和多维混沌系统的多过程图像加密方案. 必威体育下载 , 2019, 68(20): 200501.doi:10.7498/aps.68.20190553
        [16] 郭静波, 李佳文.二进制信号的混沌压缩测量与重构. 必威体育下载 , 2015, 64(19): 198401.doi:10.7498/aps.64.198401
        [17] 柴水荣, 郭立新.基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究. 必威体育下载 , 2015, 64(6): 060301.doi:10.7498/aps.64.060301
        [18] 李广明, 吕善翔.混沌信号的压缩感知去噪. 必威体育下载 , 2015, 64(16): 160502.doi:10.7498/aps.64.160502
        [19] 郭静波, 汪韧.基于混沌序列和RIPless理论的循环压缩测量矩阵的构造. 必威体育下载 , 2014, 63(19): 198402.doi:10.7498/aps.63.198402
        [20] 刘 强, 方锦清, 赵耿, 李永.基于FPGA技术的混沌加密系统研究. 必威体育下载 , 2012, 61(13): 130508.doi:10.7498/aps.61.130508
      计量
      • 文章访问数:8440
      • PDF下载量:306
      • 被引次数:0
      出版历程
      • 收稿日期:2020-06-29
      • 修回日期:2020-08-10
      • 上网日期:2020-12-07
      • 刊出日期:2020-12-20

        返回文章
        返回
          Baidu
          map