搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

刘益, 钱正洪, 朱建国

Research progress of room temperature magnetic skyrmion and its application

Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo
PDF
HTML
导出引用
  • 磁性斯格明子是一种具有涡旋状非共线自旋结构的准粒子, 具有独特的拓扑保护特性, 可在极低电流驱动下运动, 有望在信息技术领域获得广泛应用. 从2015年开始, 科学家已经发现了多种室温磁性斯格明子材料, 例如斯格明子多层膜、人工斯格明子材料、 β-Mn型单晶材料、中心对称材料(铁氧体、六方Ni 2In型)等. 其中多层膜材料由于其制备工艺简单、可通过调节各膜层厚度优化性能、器件集成度高等优点而备受关注. 这些室温磁性斯格明子材料具有涌生电动势、拓扑霍尔效应、斯格明子霍尔效应等特性, 有望用来制备多种新型自旋电子器件, 例如赛道存储器、微波探测器、纳米振荡器等, 其中赛道存储器有望成为下一代非易失性、低能耗和高密度的存储器. 本文首先介绍了磁性斯格明子的基本特性, 然后综述了近年来室温磁性斯格明子材料的研究进展、制备技术及表征方法, 最后简单介绍了用室温磁性斯格明子材料研制赛道存储器、微波探测器等原型器件的研究进展, 展望了室温磁性斯格明子材料的未来发展趋势.
    It has been found that many magnetic materials possess the properties arising from skyrmions at room temperature. In addition to the common interaction energy, chiral interaction is also needed to form the skyrmion in magnetic material. There are four chiral magnetic interactions, namely: 1) Dzyaloshinskii-Moriya (DM) interaction; 2) long-ranged magnetic dipolar interaction; 3) four-spin exchange interaction; 4) frustrated exchanged interaction. Through the competition between exchange interaction and chiral interaction, magnetic skyrmion can be realized in magnetic material subject to a certain magnetic field and temperature. The skyrmion generated by the DM interaction features small size (5–100 nm), which is easy to adjust. The skyrmion can be driven by magnetic field or ultralow current density. The magnetic materials with skyrmion can exhibit the properties related to the skyrmion Hall effect, the topological Hall effect and the emergent electrodynamics, which are closely related to the skyrmion number. The existence of skyrmion in the magnetic material can be indirectly measured by topological Hall effect. The movement of skyrmion can be driven by spin polarized current in the direction either parallel or perpendicular to the current direction. The movement of the skyrmion driven by spin polarized currents will continue when the current is present, and will disappear when the current disappears. In previous studies, magnetic skyrmions were realized in a variety of materials. However magnetic skyrmions were found only in very limited types of single crystal materials at room temperature or near room temperature. In recent years, scientists have discovered a variety of magnetic skyrmion materials at room temperature, including film materials (such as multilayer materials, artificial skyrmion materials) and crystal materialssuch as β-Mn-type Co 10–x/2Zn 10–x/2Mn x, Fe 3Sn 2. Among all kinds of room temperature magnetic skyrmion materials, the most valuable one is the multilayer film material. The Skyrmion multilayer film has the advantages of small size, adjustable material type, simple preparation, good temperature stability, good device integration,etc. At the same time, skyrmion multilayer film is very easy to optimize by adjusting and constructing a special structure that has the wanted types of materials each with a certain thickness. Artificial skyrmion material obtains artificial skyrmion by constructing a micro-nano structure, therefore the artificial skyrmion with high-temperature stability can be realized by choosing high Curie temperature materials. There are a variety of materials which can realize the skyrmion above room temperature, such as Co 9Zn 9Mn 2(300–390 K) and Fe 3Sn 2(100–400 K). These room temperature materials further widen the temperature application range of skyrmion. The room temperature materials can be prepared or characterized by a variety of techniquesincluding sputtering for fabrication and X-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) for characterization. The discovery of the magnetic skyrmion materials at room temperature not only enriches the research content of materials science, but also makes the skyrmion widely applicable in novel electronic devices (such as racetrack memory, microwave detector, oscillators). Because the skyrmion has the advantages of small size, ultra-low driving current density, and topological stability, it is expected to produce racetrack memory based on the skyrmion with low energy consumption, non-volatile and high density. The MTJ microwave detector based on skyrmion can be achieved with no external magnetic field nor bias current but with low power input (< 1.0 μW); the sensitivity of the microwave detector can reach 2000 V·W –1. The frequency of the oscillator based on skyrmion can be tuned by magnetic field or current, and moreover, the oscillato is very easy to integrate with IC. In this paper, first, the basic characteristic of magnetic skyrmion is introduced; and then room temperature magnetic skyrmion is reviewed; finally the advances of the racetrack memory, microwave detectors and oscillators are introduced, highlighting the development trend of room temperature magnetic skyrmion.
        通信作者:钱正洪,zqian@hdu.edu.cn; 朱建国,nic0400@scu.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2018YFF01010701)和中央高校基本科研业务费专项资金资助的课题
        Corresponding author:Qian Zheng-Hong,zqian@hdu.edu.cn; Zhu Jian-Guo,nic0400@scu.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFF01010701) and the Fundamental Research Funds for the Central Universities, China
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

    • 作用机制 磁偶极相
      互作用
      DM作用 阻挫交
      换作用
      四自旋交换
      相互作用
      斯格明子
      尺寸/nm
      100—1000 5—100 ~1 ~1
      典型材料 MnNiGa[16] MnSi[10] Fe3Sn2[26] Fe/Ir(111)[11]
      下载: 导出CSV

      材料 材料
      种类
      斯格明
      子种类
      制备方法 斯格明子
      温度/K
      MnSi[10] 单晶 布洛赫 布里奇
      曼法
      29
      Fe0.5Co0.5Si[35] 单晶 布洛赫 布里奇
      曼法
      25
      FeGe[13] 单晶 布洛赫 布里奇
      曼法
      60—260
      FeGe[33] 单晶 布洛赫 布里奇
      曼法
      250—270
      Fe1–xCoxSi
      (x= 0.5)[39]
      单晶 布洛赫 布里奇
      曼法
      10
      Fe/Ir[11] 金属超
      薄层
      奈尔型 分子束
      外延法
      11
      PdFe/Ir(1 1 1)[38] 金属超
      薄层
      奈尔型 分子束
      外延法
      4.2
      Cu2OSeO3[36] 单晶 布洛赫 布里奇
      曼法
      60
      FeGe1–xSix
      (x~ 0.25)[39]
      单晶 布洛赫 布里奇
      曼法
      95
      下载: 导出CSV

      材料类型 典型材料 制备方法 斯格明子温
      度范围/K
      斯格明子的
      尺寸/nm
      薄膜材料 多层膜材料 Ta/CoFeB/TaOx[17]
      (Ir/Co/Pt)10[18]
      Pt/Co/Ta, Pt/CoFeB/MgO[19]
      直流溅射 室温 1000
      30—90
      100
      反铁磁/铁磁材料薄膜 [Pt/Gd25Fe65.6Co9.4/MgO]n[23] 直流溅射 室温 180
      人工斯格明子材料 Co/Ni/Cu(001)[15]
      Co/[Co/Pd]n, Co/Pd[40]
      直流溅射 室温 1000
      单晶材料 手性对称材料 Co8Zn8Mn4[41]
      Co8Zn9Mn3[25]
      (β-Mn结构)
      布里奇曼法 284—300
      311—320
      > 125
      中心对
      称材料
      铁氧体 Ba(Fe1–xScxMg0.05)12O19[42] 布里奇曼法 室温 200
      金属间化合物 MnNiGa[16] 布里奇曼法 100—340 90
      阻挫型 Fe3Sn2[26] 聚焦离子束技术(FIB) 100—340 300
      下载: 导出CSV

      材料 驱动电流/107A·cm–2 移动速度/m·s–1 霍尔角/(°) 温度 磁场/mT
      Ta/CoFeB/TaOx[17] 0.62 0.75 32 室温 0.52
      (Pt/Co/Ta)15[19] 3.50 50 19.4 室温
      (Pt/CoFeB/MgO)15[19] 5.00 100 4.01 室温
      [Pt/Gd25Fe65.6Co9.4)/MgO]20[23] 3.55 50 20 室温 145.00
      [Pt/CoFeB/MgO]15[29] 4.20 100 30 室温 30.00
      下载: 导出CSV

      方式 材料类型 制备时间 优点
      直流溅射 薄膜材料 3 h 成本低, 适合工业量产
      分子束外延 薄膜材料 > 1 d 薄膜平整度高
      布里奇曼法 单晶材料 1 m 制作大尺寸器件
      下载: 导出CSV

      方式 分辨率
      /nm
      优点 适用场景
      XMCD-
      PEEM
      ~25 平面内高自
      旋分辨率
      外层磁性
      斯格明子
      STXM ~25 可探测磁场及电场
      敏感材料实时监控
      多层膜内部的斯
      格明子结构
      SPLEEM ~10 平面高分辨率高
      的测试敏感度
      原位沉积表面
      的斯格明子
      X射线
      全息术
      ~10 无误差探测实时
      监控(~70 ps)
      纳米尺寸的多层
      膜内部的斯格
      明子结构
      MOKEM 1000 操作简单易行 尺寸大于1 μm
      的斯格明子
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

    • [1] 史猛, 王伟伟, 杜海峰.基于符号回归方法探索磁性斯格明子结构近似解析式. 必威体育下载 , 2024, 73(1): 011201.doi:10.7498/aps.73.20231473
      [2] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭.基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 必威体育下载 , 2024, 73(10): 106801.doi:10.7498/aps.73.20231554
      [3] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰.SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 必威体育下载 , 2023, 72(16): 160701.doi:10.7498/aps.72.20230735
      [4] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国.霍尔天平材料的多场调控. 必威体育下载 , 2021, 70(4): 048501.doi:10.7498/aps.70.20201799
      [5] 张真真, 黎华, 曹俊诚.高速太赫兹探测器. 必威体育下载 , 2018, 67(9): 090702.doi:10.7498/aps.67.20180226
      [6] 胡杨凡, 万学进, 王彪.磁性斯格明子晶格的磁弹现象与机理. 必威体育下载 , 2018, 67(13): 136201.doi:10.7498/aps.67.20180251
      [7] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国.磁性斯格明子的多场调控研究. 必威体育下载 , 2018, 67(13): 137507.doi:10.7498/aps.67.20180931
      [8] 刘艺舟, 臧佳栋.磁性斯格明子的研究现状和展望. 必威体育下载 , 2018, 67(13): 131201.doi:10.7498/aps.67.20180619
      [9] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒.宽温域跨室温磁斯格明子材料的发现及器件研究. 必威体育下载 , 2018, 67(13): 137509.doi:10.7498/aps.67.20180419
      [10] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平.磁性斯格明子的赛道存储. 必威体育下载 , 2018, 67(13): 137510.doi:10.7498/aps.67.20180764
      [11] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰.薄膜异质结中磁性斯格明子的相关研究. 必威体育下载 , 2018, 67(13): 131204.doi:10.7498/aps.67.20180549
      [12] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会.还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 必威体育下载 , 2017, 66(8): 080701.doi:10.7498/aps.66.080701
      [13] 汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金.电荷俘获存储器的过擦现象. 必威体育下载 , 2014, 63(20): 203101.doi:10.7498/aps.63.203101
      [14] 汪家余, 赵远洋, 徐建彬, 代月花.缺陷对电荷俘获存储器写速度影响. 必威体育下载 , 2014, 63(5): 053101.doi:10.7498/aps.63.053101
      [15] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷.近红外单光子探测器. 必威体育下载 , 2007, 56(10): 5790-5795.doi:10.7498/aps.56.5790
      [16] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山.磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转. 必威体育下载 , 2006, 55(2): 860-864.doi:10.7498/aps.55.860
      [17] 孙劲鹏, 王太宏.基于库仑阻塞原理的多值存储器. 必威体育下载 , 2003, 52(10): 2563-2568.doi:10.7498/aps.52.2563
      [18] 徐锋, 刘辽.瞬时响应的粒子探测器模型. 必威体育下载 , 1988, 37(8): 1267-1274.doi:10.7498/aps.37.1267
      [19] 陈继述.红外薄膜热电探测器分析. 必威体育下载 , 1974, 23(6): 51-58.doi:10.7498/aps.23.51
      [20] А.Ф.杜纳耶切夫, Ю.Д.布罗高舒金, 唐孝威.π-介子星裂探测器. 必威体育下载 , 1960, 16(8): 471-478.doi:10.7498/aps.16.471
    计量
    • 文章访问数:13545
    • PDF下载量:730
    • 被引次数:0
    出版历程
    • 收稿日期:2020-06-26
    • 修回日期:2020-07-25
    • 上网日期:2020-12-02
    • 刊出日期:2020-12-05

      返回文章
      返回
        Baidu
        map