搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹

Research progress of wide bandgap perovskite materials and solar cells

Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan
PDF
HTML
导出引用
  • 金属卤化物钙钛矿太阳电池在近几年获得了巨大进展. 目前单结钙钛矿太阳电池转化效率已经达到25.2%. 经过带隙调整得到的1.63 eV及以上的宽带隙钙钛矿太阳电池是制备多结叠层太阳电池中顶部吸收层的最佳材料. 除高效叠层太阳电池外, 宽带隙钙钛矿在光伏建筑一体化以及光解水制氢等领域中也有着广阔的应用前景. 然而这种钙钛矿薄膜本身缺陷较多, 在光照下还容易发生卤素分离, 这也是限制宽带隙钙钛矿太阳电池发展的关键因素. 本文综述了目前宽带隙钙钛矿及太阳电池的发展现状, 最后对其未来发展前景进行了展望.
    Organic-inorganic metal halide perovskites are a new type of photovoltaic material, they have attracted wide attention and made excellent progress in recent years. The power conversion efficiency of a single-junction perovskite solar cell has been increased to 25.2% just within a decade. Meanwhile, crystalline silicon solar cells account for nearly 90% of industrialized solar cells and have a maximum efficiency of 26.7%, approaching to their theoretical limit. It is more difficult to further improve the efficiency of single junction solar cells. It has been shown that multi-junction tandem solar cells prepared by stacking absorption layers with different bandgaps can better use sunlight, which is one of the most promising strategies to break the efficiency limitation of single-junction solar cells. Due to the bandgap tunability and low-temperature solution processability, perovskites stand out among many other materials for manufacturing multi-junction tandem solar cells. Wide bandgap perovskites with a bandgap of 1.63 eV or above have been combined with narrow band gap inorganic absorption layers such as silicon, copper indium gallium selenide, cadmium telluride or narrow bandgap perovskite to produce high efficiency tandem solar cells. In addition to the promoting of the efficiency improvement of solar cells, the wide bandgap perovskites have broad applications in photovoltaic building integration and photocatalytic fields. Therefore, it is very important to explore and develop high quality wide bandgap perovskite materials and solar cells. Unfortunately, the wide bandgap perovskites have several intrinsic weaknesses, including being more vulnerable to the migration of halogen ions under being illuminated, more defects, and greater possibility of energy level mismatching with the charge transport layers than the narrow bandgap counterparts, which limits the further development of the wide bandgap perovskite solar cells. In this review, the development status of wide bandgap perovskite solar cells is summarized and corresponding strategies for improving their performance are put forward. Furthermore, some personal views on the future development of wide bandgap perovskite solar cells are also presented here in this paper.
        通信作者:张晓丹,xdzhang@nankai.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2018YFB1500103)、国家自然科学基金(批准号: 61674084)、高等学校学科创新引智计划(111 计划) (批准号: B16027)、天津市科技项目(批准号: 18ZXJMTG00220)和中央高校基本科研业务费(批准号: 63201171)资助的课题
        Corresponding author:Zhang Xiao-Dan,xdzhang@nankai.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Fund for the Central Universities, China (Grant No. 63201171)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

    • Type Perovskite Eg/eV VOC/V qVOC/Eg JSC/mA·cm–2 FF/% PCE/% Ref.
      p-i-n MAPbI2.5Br0.5 1.72 1.060 0.61 18.30 78.2 16.60 [35]
      p-i-n (FA0.83MA0.17)0.95Cs0.05Pb(I0.6Br0.4)3 1.71 1.210 0.71 19.70 77.5 18.50 [36]
      p-i-n FA0.6Cs0.4Pb(I0.7Br0.3)3 1.75 1.170 0.67 17.50 80.0 16.30 [37]
      p-i-n FA0.83MA0.17Pb(I0.6Br0.4)3 1.72 1.150 0.67 19.40 77.0 17.20 [38]
      p-i-n FA0.8Cs0.2Pb(I0.7Br0.3)3 1.75 1.240 0.71 17.92 81.9 18.19 [39]
      p-i-n (FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)3 1.68 1.170 0.70 21.20 79.8 19.50 [27]
      p-i-n Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 1.64 1.190 0.73 19.50 80.2 18.60 [40]
      p-i-n CsPbI3 1.73 1.160 0.67 17.70 78.6 16.10 [41]
      p-i-n CsPbI2Br 1.80 1.230 0.67 15.26 78.0 15.19 [42]
      p-i-n FA0.6Cs0.3DMA0.1PbI2.4Br0.6 1.70 1.200 0.70 19.60 82.0 19.40 [43]
      p-i-n FA0.75Cs0.25Pb(I0.8Br0.2)3 1.68 1.217 0.72 20.18 83.6 20.42 [44]
      p-i-n (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)3 1.67 1.200 0.72 NA NA 20.70 [45]
      p-i-n (FA0.64MA0.20Cs0.15)Pb0.99(I0.79Br0.2)3 1.68 1.196 0.71 21.65 81.5 21.00 [46]
      n-i-p Rb0.05(FA0.75MA0.15Cs0.1)0.95PbI2Br 1.73 1.120 0.71 19.40 73.0 15.90 [47]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.75 1.160 0.66 18.27 78.5 16.28 [48]
      n-i-p FA0.85Cs0.15Pb(I0.73Br0.27)3 1.72 1.240 0.72 19.83 73.7 18.13 [49]
      n-i-p FA0.8Cs0.2Pb(I0.7Br0.3)3 1.75 1.250 0.71 18.53 79.0 18.27 [50]
      n-i-p MAPb(Br0.2I0.8)3 1.72 1.120 0.65 17.30 82.3 15.90 [51]
      n-i-p K0.1(Cs0.06FA0.79MA0.15)0.9Pb(I0.4Br0.6)3 1.78 1.230 0.69 17.90 79.0 17.50 [52]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.75 1.230 0.70 18.34 79.0 17.80 [53]
      n-i-p Cs0.17FA0.83PbI2.2Br0.8 1.72 1.270 0.74 19.30 77.4 18.60 [54]
      n-i-p Cs0.12MA0.05FA0.83Pb(I0.6Br0.4)3 1.74 1.250 0.72 19.00 81.5 19.10 [55]
      n-i-p Rb5(Cs5MAFA)95Pb(I0.83Br0.17)3 1.63 1.240 0.76 22.80 81.0 21.60 [56]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.74 1.200 0.70 19.40 75.1 17.00 [57]
      n-i-p FA0.17Cs0.83PbI2.2Br0.8 1.72 1.244 0.72 19.80 75.0 18.60 [51]
      n-i-p Cs0.2FA0.8Pb(I0.75Br0.25)3 1.65 1.220 0.74 21.20 80.5 20.70 [55]
      n-i-p BA0.09(FA0.83 Cs0.17)0.91Pb(I0.6Br0.4)3 1.72 1.180 0.69 19.80 73.0 17.30 [38]
      n-i-p FA0.15Cs0.85Pb(I0.73Br0.27)3 1.72 1.240 0.72 19.83 73.7 18.10 [58]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.72 1.310 0.76 19.30 78.0 19.50 [59]
      n-i-p Rb0.05Cs0.095MA0.1425FA0.7125PbI2Br 1.72 1.205 0.70 18.00 78.9 17.10 [54]
      n-i-p CsPbI3 1.73 1.080 0.62 18.41 79.32 15.71 [60]
      n-i-p CsPbI2Br 1.80 1.230 0.68 16.79 77.81 16.07 [61]
      n-i-p β-CsPbI3 1.68 1.110 0.66 20.23 82.0 18.40 [62]
      n-i-p CsPbI3-xBrx 1.77 1.234 0.69 18.30 82.5 18.64 [63]
      n-i-p CsPbI2Br 1.80 1.270 0.71 15.40 79.0 15.50 [64]
      注: NA表示文献中没有给出具体数值; FF表示填充因子.
      下载: 导出CSV

      序号 钙钛矿中常用离子 有效半径R/pm
      1 胍离子(GA+) 278
      2 二甲胺离子(DMA+) 272
      3 甲脒离子(FA+) 253
      4 甲胺离子(MA+) 217
      5 铯离子(Cs+) 167
      6 铷离子(Rb+) 152
      7 钾离子(K+) 138
      8 钠离子(Na+) 102
      9 铅离子(Pb2+) 119
      10 锡离子(Sn2+) 112
      11 碘离子(I) 220
      12 溴离子(Br) 196
      13 氯离子(Cl) 181
      下载: 导出CSV

      Type Perovskite Eg/eV VOC/V Jsc/mA·cm–2 FF/% PCE/% Year Area/cm2 Ref.
      N-I-P MAPbI3 1.61 1.580 11.50 75.00 13.70 2015 1.00 [15]
      FA0.83MA0.17Pb(I0.84Br0.16)3 1.63 1.785 14.00 79.50 19.90 2016 0.16 [133]
      MAPbI3 1.60 1.692 15.80 79.90 21.40 2016 0.17 [134]
      MAPbI3 1.60 1.701 16.10 70.10 19.20 2016 1.22 [134]
      Cs0.19MA0.81PbI3 1.59 1.751 18.80 77.10 22.70 2018 0.25 [135]
      Cs0.19MA0.81PbI3 1.59 1.779 16.50 74.10 21.70 2018 1.43 [135]
      Cs0.19FA0.81Pb(I0.78Br0.22)3 1.63 1.769 16.50 65.40 19.10 2018 12.96 [135]
      MA0.37FA0.48Cs0.15PbI2.01Br0.99 1.69 1.703 15.26 79.20 20.57 2017 0.03 [136]
      FA0.5MA0.38Cs0.12PbI2.04Br0.96 1.69 1.655 16.50 81.10 22.22 2018 0.06 [137]
      FA0.75MA0.25Pb(I0.76B0.24)3 1.65 1.710 15.49 71.00 18.81 2018 0.13 [138]
      Cs0.08FA0.74MA0.18Pb(I0.88Br0.12)3 1.65 1.780 17.82 75.00 23.73 2018 0.13 [139]
      Cs0.1(FA0.75MA0.25)0.9Pb(I0.78Br0.22)3 1.67 1.830 16.74 70.00 21.31 2019 0.13 [133]
      Cs0.08FA0.69MA0.23Pb(I0.78Br22)3 1.67 1.750 16.89 74.18 21.93 2019 0.13 [140]
      CsRbFAMAPbI3-xBrx 1.62 1.763 17.80 78.10 24.50 2018 1.00 [132]
      P-I-N Cs0.17FA0.83Pb(Br0.17I0.83)3 1.63 1.650 18.10 79.00 23.60 2017 1.00 [141]
      FA0.75Cs0.25Pb(I0.8Br0.2)3 1.68 1.770 18.40 77.00 25.00 2018 1.00 [142]
      Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)3 1.60 1.760 18.50 78.50 25.50 2018 0.81 [143]
      CsxFA1-xPb(I, Br)3 1.60 1.788 19.50 73.10 25.20 2018 1.42 [144]
      CsxFA1-xPb(I, Br)3 1.60 1.741 19.50 74.70 25.40 2018 1.42 [145]
      Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 1.64 1.800 17.80 79.40 25.40 2018 0.49 [40]
      Cs0.05(FA0.83MA0.17)0.95Pb(I0.82Br0.18)3 1.63 1.792 19.02 74.60 25.43 2019 1.00 [146]
      Cs0.1MA0.9Pb(I0.9Br0.1)3 1.60 1.820 19.20 75.30 26.20 2020 NA [147]
      Cs0.25FA0.75Pb(I0.85Br0.15Cl0.05)3 1.67 1.890 19.10 75.30 27.04 2020 1.00 [44]
      Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)3 1.68 1.700 19.80 77.00 25.70 2020 0.83 [46]
      (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)3 1.68 1.818 18.90 76.40 26.20 2020 1.00 [45]
      注: NA表示文献中没有给出具体数值.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

    • [1] 王静, 高姗, 段香梅, 尹万健.钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 必威体育下载 , 2024, 73(6): 063101.doi:10.7498/aps.73.20231631
      [2] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹.丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池. 必威体育下载 , 2024, 73(15): 158401.doi:10.7498/aps.73.20240561
      [3] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓.高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 必威体育下载 , 2023, 72(12): 126401.doi:10.7498/aps.72.20230020
      [4] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉.迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 必威体育下载 , 2023, 72(5): 058801.doi:10.7498/aps.72.20222019
      [5] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉.团簇状缺陷对纤维束断裂过程的影响. 必威体育下载 , 2021, 70(20): 204602.doi:10.7498/aps.70.20210310
      [6] 尹媛, 李玲, 尹万健.太阳能电池材料缺陷的理论与计算研究. 必威体育下载 , 2020, 69(17): 177101.doi:10.7498/aps.69.20200656
      [7] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义.钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 必威体育下载 , 2019, 68(7): 078801.doi:10.7498/aps.68.20182221
      [8] 刘昊华, 王少华, 李波波, 李桦林.缺陷致非线性电路孤子非对称传输. 必威体育下载 , 2017, 66(10): 100502.doi:10.7498/aps.66.100502
      [9] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生.氮对金刚石缺陷发光的影响. 必威体育下载 , 2015, 64(24): 247802.doi:10.7498/aps.64.247802
      [10] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖.GaN厚膜中的质子辐照诱生缺陷研究. 必威体育下载 , 2013, 62(11): 117103.doi:10.7498/aps.62.117103
      [11] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇.GaN HEMT栅边缘电容用于缺陷的研究. 必威体育下载 , 2011, 60(9): 097101.doi:10.7498/aps.60.097101
      [12] 张浩, 赵建林, 张晓娟.带缺陷结构的二维磁性光子晶体的数值模拟分析. 必威体育下载 , 2009, 58(5): 3532-3537.doi:10.7498/aps.58.3532
      [13] 宁利中, 齐昕, 余荔, 周洋.混合流体Rayleigh-Benard行波对流中的缺陷结构. 必威体育下载 , 2009, 58(4): 2528-2534.doi:10.7498/aps.58.2528
      [14] 张凯旺, 钟建新.缺陷对单壁碳纳米管熔化与预熔化的影响. 必威体育下载 , 2008, 57(6): 3679-3683.doi:10.7498/aps.57.3679
      [15] 夏志林, 邵建达, 范正修.薄膜体内缺陷对损伤概率的影响. 必威体育下载 , 2007, 56(1): 400-406.doi:10.7498/aps.56.400
      [16] 陈志权, 河裾厚男.He离子注入ZnO中缺陷形成的慢正电子束研究. 必威体育下载 , 2006, 55(8): 4353-4357.doi:10.7498/aps.55.4353
      [17] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西.LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 必威体育下载 , 2005, 54(6): 2899-2903.doi:10.7498/aps.54.2899
      [18] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英.p-n 型GaInP2/GaAs叠层太阳电池研究. 必威体育下载 , 2004, 53(11): 3632-3636.doi:10.7498/aps.53.3632
      [19] 李鹏飞, 颜晓红, 王如志.缺陷对准周期磁超晶格输运性质的影响. 必威体育下载 , 2002, 51(9): 2139-2143.doi:10.7498/aps.51.2139
      [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成.掺镧PbWO4闪烁晶体的缺陷研究. 必威体育下载 , 2000, 49(10): 2007-2010.doi:10.7498/aps.49.2007
    计量
    • 文章访问数:25095
    • PDF下载量:1101
    • 被引次数:0
    出版历程
    • 收稿日期:2020-05-31
    • 修回日期:2020-06-26
    • 上网日期:2020-10-15
    • 刊出日期:2020-10-20

      返回文章
      返回
        Baidu
        map