-
近年来, 可穿戴电子产品得到了广泛的研究, 为健康监测、人类疾病诊断和治疗以及智能机器人提供了新的机会. 传感器是可穿戴电子产品的关键组成部分之一. 蚕丝(bombyx mori)材料具有高产量、优异的拉伸强度(0.5—1.3 GPa)和韧性(6 × 10 4—16 × 10 4J/kg)、良好的生物相容性、可降解性以及易加工性等特征. 随着生物材料和相关制造技术的快速发展, 蚕丝基先进材料被研究应用在可穿戴传感器中. 本文首先介绍了蚕丝自下而上的层结构以及蚕丝基先进材料的形态和特点, 随后综述了近年来蚕丝在可穿戴传感领域的研究进展, 包括机械(应力、应变)传感器、电生理传感器、温度传感器及湿度传感器等. 讨论和总结了不同传感器的工作机制、结构和性能, 蚕丝蛋白在其中的作用以及它们在健康监测中的应用. 最后, 提出蚕丝基可穿戴传感器在实际应用中所面临的挑战和未来展望.In recent years, wearable electronics has received extensive attention, providing new opportunities for implementing health monitoring, human disease diagnosis and treatment, and intelligent robotics. Sensor is one of the key components of wearable electronics. Silk (Bombyx Mori) material shows unique features including high yield, excellent tensile strength (0.5–1.3 GPa) and toughness ((6–16) × 10 4J/kg), good biocompatibility, programmable/controllable biodegradability, novel dielectric properties, and various material formats. With the rapid development of biomaterials and related manufacturing technologies, advanced silk-based materials have been studied and applied to wearable sensors. Here, we firstly introduce the five-level structure of silk fibroin from bottom to top and characteristics of silk-based advanced materials, and then review the research progress of silk-based advanced materials in wearable sensors in recent years, including mechanical sensors, electrophysiological sensors, temperature sensors and humidity sensors. The working mechanism, structure and performance of different sensors, the role of silk proteins in them, and their applications in health monitoring are discussed and summarized. Finally, the challenges and future prospects of silk-based wearable sensors in practical applications are put forward.
-
Keywords:
- silk fiber/
- silk fibroin/
- wearable sensor/
- mesoscopic reconstruction
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] -
传感器类型 传感材料 基底材料 信号 应用 文献 应变 蚕丝纤维和Gr Ecoflex 电阻 关节运动 [34] 应变 碳化的丝织物 Ecoflex 电阻 人体运动 [65] 应变 PSB PSB 电阻 手指运动 [67] 应变 Ag NWs RSF膜 电流 人体运动 [68] 压力 CSFM PDMS 电流 脉搏运动 [35] 应变+压力 Ag NFs和Ecoflex RSF膜 电容 手臂运动 [37] 压力 蚕丝纤维和Ag NWs Ecoflex 电容 智能织物 [69] 压力 rGO 蚕丝织物 电阻 脉搏运动 [48] 压力 Ag NWs 蚕丝织物 电容 手臂运动 [38] 电生理 Au RSF膜 电阻 肌电图 [36] 电生理 Ag/AgCl RSF水凝胶 电压 心电图 [72] 电生理 Ag NWs RSF水凝胶 电压 心电图 [73] 温度+压力 碳化的丝纤维 PET 电阻 电子皮肤 [74] 温度 离子液体和丝纤维 Ecoflex 电阻 智能织物 [69] 温度+加热器 Ag NFs + Pt RSF膜 电阻 电子皮肤 [39] 湿度 Gr RSF膜 电阻 表皮电子 [75] 应变+湿度+温度 IDE (Ag NWs) RSF膜 电容 呼吸监测 [81] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82]
计量
- 文章访问数:11345
- PDF下载量:481
- 被引次数:0