搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    史晨阳, 林燕丹

    Objective image quality assessment based on image color appearance and gradient features

    Shi Chen-Yang, Lin Yan-Dan
    PDF
    HTML
    导出引用
    • 图像质量评价(IQA)方法需要考虑如何从主观视觉度量结果出发, 设计出符合该结果的客观图像质量评价方法, 应用到相关实际问题中. 本文从视觉感知特性出发, 量化色度和结构特征信息, 提出了基于色貌和梯度两个图像特征的图像质量客观评价模型. 两个色貌新指标(vividness和depth)是色度特征信息提取算子; 梯度算子用来提取结构特征信息. 其中, vividness相似图一方面作为特征提取算子计算失真图像局部质量分数, 另一方面作为图像全局权重系数反应每个像素的重要程度. 为了量化所提模型的主要参数, 根据通用模型性能评价指标, 使用Taguchi实验设计方法进行优化. 为了验证该模型的性能, 使用4个常用图像质量数据库中的94幅参考图像和4830幅失真图像进行对比测试, 从预测精度、计算复杂度和泛化性进行分析. 结果表明, 所提模型的精度PLCC值在4给数据库中最低实现0.8455, 最高可以达到0.9640, 综合性能优于10个典型和近期发表的图像质量评估(IQA)模型. 研究结果表明, 所提模型是有效的、可行的, 是一个性能优异的IQA模型.
      With the rapid development of color image contents and imaging devices in various kinds of multimedia communication systems, conventional grayscale counterparts are replaced by chromatic ones. Under such a transition, the image quality assessment (IQA) model needs to be built by subjective visual measurement, designed in accordance with the results, and applied to the related practical problems. Based on the visual perception characteristics, chromaticity and the structure feature information are quantified, and an objective IQA model combining the color appearance and the gradient image features is proposed in this paper, namely color appearance and gradient similarity(CAGS) model. Two new color appearance indices, vividness and depth, are selected to build the chromatic similarity map. The structure information is characterized by gradient similarity map. Vividness map plays two roles in the proposed model. One is utilized as feature extractor to compute the local quality of distorted image, and the other is as a weight part to reflect the importance of local domain. To quantify the specific parameters of CAGS, Taguchi method is used and four main parameters, i.e., K V, K D, K Gand α, of this model are determined based on the statistical correlation indices. The optimal parameters of CAGS are K V= K D= 0.02, K G= 50, and α= 0.1. Furthermore, the CAGS is tested by utilizing 94 reference images and 4830 distorted images from the four open image databases (LIVE, CSIQ, TID2013 and IVC). Additionally, the influences of the 35 distortion types on IQA are analyzed. Massive experiments are performed on four publicly available benchmark databases between CAGS and other 10 state-of-the-art and recently published IQA models, for the accuracy, complexity and generalization performance of IQA. The experimental results show that the accuracy PLCC of the CAGS model can achieve 0.8455 at lowest and 0.9640 at most in the four databases, and the results about commonly evaluation criteria prove that the CAGS performs higher consistency with the subjective evaluations. Among the 35 distortion types, the two distortion types, namely contrast change and change of color saturation, CAGS and mostly IQA models have the worst influence on IQA, and the CAGS yields the highest top three rank number. Moreover, the SROCC values of CAGS for other distortion types are all larger than 0.6 and the number of SROCC value larger than 0.95 is 14 times. Besides, the CAGS maintains a moderate computational complexity. These results of test and comparison above show that the CAGS model is effective and feasible, and the corresponding model has an excellent performance.
          通信作者:林燕丹,ydlin@fudan.edu.cn
        • 基金项目:国家重点研发计划(批准号: 2017YFB0403700)资助的课题
          Corresponding author:Lin Yan-Dan,ydlin@fudan.edu.cn
        • Funds:Project supported by the National Key R&D Program of China (Grant No. 2017YFB0403700)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

      • 数据库 原始图像数量 失真图像数量 失真类型 观察者
        TID2013 25 3000 24 971
        CSIQ 30 866 6 35
        LIVE 29 779 5 161
        IVC 10 185 4 15
        下载: 导出CSV

        代号 参数表述 水准数 水准一 水准二 水准三
        A KV 3 0.002 0.02 0.2
        B KD 3 0.002 0.02 0.2
        C KG 3 10 50 100
        D α 3 0.1 0.5 1
        下载: 导出CSV

        实验序号 A B C D SROCC SROCC的S/N RMSE RMSE的S/N
        1 1 1 1 1 0.9300 –0.6303 0.4113 7.7168
        2 1 2 2 2 0.9192 –0.7318 0.4533 6.8723
        3 1 3 3 3 0.9096 –0.8230 0.4825 6.3301
        4 2 1 2 3 0.9171 –0.7517 0.4596 6.7524
        5 2 2 3 1 0.9173 –0.7498 0.4672 6.6099
        6 2 3 1 2 0.9291 –0.6388 0.4142 7.6558
        7 3 1 3 2 0.9114 –0.8058 0.4735 6.4936
        8 3 2 1 3 0.9279 –0.6500 0.4174 7.5890
        9 3 3 2 1 0.9195 –0.7290 0.4481 6.9725
        下载: 导出CSV

        数据库 SSIM IW-SSIM IFC VIF MAD RFSIM FSIMC GSM CVSS MPCC Proposed
        TID2013 SROCC 0.7417 0.7779 0.5389 0.6769 0.7807 0.7744 0.8510 0.7946 0.8069 0.8452 0.8316
        PLCC 0.7895 0.8319 0.5538 0.7720 0.8267 0.8333 0.8769 0.8464 0.8406 0.8616 0.8445
        RMSE 0.7608 0.6880 1.0322 0.7880 0.6975 0.6852 0.5959 0.6603 0.6715 0.6293 0.6639
        KROCC 0.5588 0.5977 0.3939 0.5147 0.6035 0.5951 0.6665 0.6255 0.6331 0.6469
        CSIQ SROCC 0.8756 0.9213 0.7671 0.9195 0.9466 0.9295 0.9310 0.9108 0.9580 0.9569 0.9198
        PLCC 0.8613 0.9144 0.8384 0.9277 0.9502 0.9179 0.9192 0.8964 0.9589 0.9586 0.9014
        RMSE 0.1334 0.1063 0.1431 0.0980 0.0818 0.1042 0.1034 0.1164 0.0745 0.0747 0.1137
        KROCC 0.6907 0.7529 0.5897 0.7537 0.7970 0.7645 0.7690 0.7374 0.8171 0.7487
        LIVE SROCC 0.9479 0.9567 0.9259 0.9636 0.9669 0.9401 0.9599 0.9561 0.9672 0.9660 0.9734
        PLCC 0.9449 0.9522 0.9268 0.9604 0.9675 0.9354 0.9503 0.9512 0.9651 0.9622 0.9640
        RMSE 8.9455 8.3473 10.2643 7.6137 6.9073 9.6642 7.1997 8.4327 7.1573 7.4397 8.3251
        KROCC 0.7963 0.8175 0.7579 0.8282 0.8421 0.7816 0.8366 0.8150 0.8406 0.8658
        IVC SROCC 0.9018 0.9125 0.8993 0.8964 0.9146 0.8192 0.9293 0.8560 0.8836 0.9195
        PLCC 0.9119 0.9231 0.9093 0.9028 0.9210 0.8361 0.9392 0.8662 0.8438 0.9298
        RMSE 0.4999 0.4686 0.5069 0.5239 0.4746 0.6684 0.4183 0.6088 0.6538 0.4483
        KROCC 0.7223 0.7339 0.7202 0.7158 0.7406 0.6452 0.7636 0.6609 0.6957 0.7488
        权重平均 SROCC 0.8051 0.8376 0.6560 0.7750 0.8456 0.8306 0.8859 0.8438 0.8628 0.8737
        PLCC 0.8321 0.8696 0.6786 0.8353 0.8752 0.8650 0.8987 0.8730 0.8820 0.8772
        KROCC 0.6270 0.6662 0.5002 0.6158 0.6819 0.6575 0.7160 0.6775 0.7020 0.7044
        直接平均 SROCC 0.8668 0.8921 0.7828 0.8641 0.9022 0.8658 0.9178 0.8794 0.9039 0.9111
        PLCC 0.8769 0.9054 0.8071 0.8907 0.9164 0.8807 0.9214 0.8901 0.9021 0.9099
        KROCC 0.6920 0.7255 0.6154 0.7031 0.7458 0.6966 0.7589 0.7097 0.7466 0.7526
        下载: 导出CSV

        数据库 失真类型 SSIM IW-SSIM IFC VIF MAD RFSIM FSIMC GSM CVSS MPCC Proposed
        TID2013 AGN 0.8671 0.8438 0.6612 0.8994 0.8843 0.8878 0.9101 0.9064 0.9401 0.8666 0.9359
        ANC 0.7726 0.7515 0.5352 0.8299 0.8019 0.8476 0.8537 0.8175 0.8639 0.8187 0.8653
        SCN 0.8515 0.8167 0.6601 0.8835 0.8911 0.8825 0.8900 0.9158 0.9077 0.7396 0.9276
        MN 0.7767 0.8020 0.6932 0.8450 0.7380 0.8368 0.8094 0.7293 0.7715 0.7032 0.7526
        HFN 0.8634 0.8553 0.7406 0.8972 0.8876 0.9145 0.9094 0.8869 0.9097 0.8957 0.9159
        IN 0.7503 0.7281 0.6208 0.8537 0.2769 0.9062 0.8251 0.7965 0.7457 0.6747 0.8361
        QN 0.8657 0.8468 0.6282 0.7854 0.8514 0.8968 0.8807 0.8841 0.8869 0.7931 0.8718
        GB 0.9668 0.9701 0.8907 0.9650 0.9319 0.9698 0.9551 0.9689 0.9348 0.9218 0.9614
        DEN 0.9254 0.9152 0.7779 0.8911 0.9252 0.9359 0.9330 0.9432 0.9427 0.9510 0.9466
        JPEG 0.9200 0.9187 0.8357 0.9192 0.9217 0.9398 0.9339 0.9284 0.9521 0.8964 0.9585
        JP2 K 0.9468 0.9506 0.9078 0.9516 0.9511 0.9518 0.9589 0.9602 0.9587 0.9160 0.9620
        JPTE 0.8493 0.8388 0.7425 0.8409 0.8283 0.8312 0.8610 0.8512 0.8613 0.8571 0.8644
        J2 TE 0.8828 0.8656 0.7769 0.8761 0.8788 0.9061 0.8919 0.9182 0.8851 0.8409 0.9250
        NEPN 0.7821 0.8011 0.5737 0.7720 0.8315 0.7705 0.7937 0.8130 0.8201 0.7753 0.7833
        Block 0.5720 0.3717 0.2414 0.5306 0.2812 0.0339 0.5532 0.6418 0.5152 0.5396 0.6015
        MS 0.7752 0.7833 0.5522 0.6276 0.6450 0.5547 0.7487 0.7875 0.7150 0.7520 0.7441
        CTC 0.3775 0.4593 0.1798 0.8386 0.1972 0.3989 0.4679 0.4857 0.2940 0.7814 0.4514
        CCS 0.4141 0.4196 0.4029 0.3009 0.0575 0.0204 0.8359 0.3578 0.2614 0.7054 0.3711
        MGN 0.7803 0.7728 0.6143 0.8486 0.8409 0.8464 0.8569 0.8348 0.8799 0.8766 0.8700
        CN 0.8566 0.8762 0.8160 0.8946 0.9064 0.8917 0.9135 0.9124 0.9351 0.8174 0.9168
        LCNI 0.9057 0.9037 0.8160 0.9204 0.9443 0.9010 0.9485 0.9563 0.9629 0.8095 0.9574
        ICQD 0.8542 0.8401 0.6006 0.8414 0.8745 0.8959 0.8815 0.8973 0.9108 0.8596 0.9060
        CHA 0.8775 0.8682 0.8210 0.8848 0.8310 0.8990 0.8925 0.8823 0.8523 0.8094 0.8768
        SSR 0.9461 0.9474 0.8885 0.9353 0.9567 0.9326 0.9576 0.9668 0.9605 0.9178 0.9580
        CSIQ AWGN 0.8974 0.9380 0.8431 0.9575 0.9541 0.9441 0.9359 0.9440 0.9670 0.9329 0.9652
        JPEG 0.9543 0.9662 0.9412 0.9705 0.9615 0.9502 0.9664 0.9632 0.9689 0.9564 0.9573
        JP2 K 0.9605 0.9683 0.9252 0.9672 0.9752 0.9643 0.9704 0.9648 0.9777 0.9630 0.9545
        AGPN 0.8924 0.9059 0.8261 0.9511 0.9570 0.9357 0.9370 0.9387 0.9516 0.9517 0.9492
        GB 0.9608 0.9782 0.9527 0.9745 0.9602 0.9643 0.9729 0.9589 0.9789 0.9664 0.9574
        CTC 0.7925 0.9539 0.4873 0.9345 0.9207 0.9527 0.9438 0.9354 0.9324 0.9399 0.9273
        LIVE JP2 K 0.9614 0.9649 0.9113 0.9696 0.9676 0.9323 0.9724 0.9700 0.9719 0.9608 0.9822
        JPEG 0.9764 0.9808 0.9468 0.9846 0.9764 0.9584 0.9840 0.9778 0.9836 0.9674 0.9836
        AWGN 0.9694 0.9667 0.9382 0.9858 0.9844 0.9799 0.9716 0.9774 0.9809 0.9457 0.9837
        GB 0.9517 0.9720 0.9584 0.9728 0.9465 0.9066 0.9708 0.9518 0.9662 0.9561 0.9641
        FF 0.9556 0.9442 0.9629 0.9650 0.9569 0.9237 0.9519 0.9402 0.9592 0.9627 0.9633
        下载: 导出CSV

        IQA模型 运行时间/s IQA模型 运行时间/s
        PSNR 0.0186 RFSIM 0.1043
        SSIM 0.0892 FSIMc 0.3505
        IW-SSIM 0.6424 GSM 0.1018
        IFC 1.1554 CVSS 0.0558
        VIF 1.1825 MPCC
        MAD 2.7711 CAGS 0.4814
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

      • [1] 赵丹, 王帅虎, 刘少刚, 崔进, 董立强.磁流变液构成的类梯度结构振动传递特性. 必威体育下载 , 2020, 69(9): 098301.doi:10.7498/aps.69.20200326
        [2] 姚军财, 申静.基于图像内容对比感知的图像质量客观评价. 必威体育下载 , 2020, 69(14): 148702.doi:10.7498/aps.69.20200335
        [3] 李吉, 刘伍明.梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 必威体育下载 , 2018, 67(11): 110302.doi:10.7498/aps.67.20180539
        [4] 姚军财, 刘贵忠.基于图像内容视觉感知的图像质量客观评价方法. 必威体育下载 , 2018, 67(10): 108702.doi:10.7498/aps.67.20180168
        [5] 管义钧, 孙宏祥, 袁寿其, 葛勇, 夏建平.近表面层黏性模量梯度变化的复合平板中激光热弹激发声表面波的传播特性. 必威体育下载 , 2016, 65(22): 224201.doi:10.7498/aps.65.224201
        [6] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军.高功率梯度掺杂增益光纤温度特性理论研究. 必威体育下载 , 2016, 65(10): 104204.doi:10.7498/aps.65.104204
        [7] 周先春, 汪美玲, 石兰芳, 周林锋, 吴琴.基于梯度与曲率相结合的图像平滑模型的研究. 必威体育下载 , 2015, 64(4): 044201.doi:10.7498/aps.64.044201
        [8] 吴惠彬, 梅凤翔.事件空间中完整力学系统的梯度表示. 必威体育下载 , 2015, 64(23): 234501.doi:10.7498/aps.64.234501
        [9] 周建华, 李栋华, 曾阳素, 朱鸿鹏.梯度负折射率介质中高斯光束传输特性的研究. 必威体育下载 , 2014, 63(10): 104205.doi:10.7498/aps.63.104205
        [10] 侯明强, 龚自正, 徐坤博, 郑建东, 曹燕, 牛锦超.密度梯度薄板超高速撞击特性的实验研究. 必威体育下载 , 2014, 63(2): 024701.doi:10.7498/aps.63.024701
        [11] 刘岩, 张文明, 仲作阳, 彭志科, 孟光.光梯度力驱动纳谐振器的非线性动力学特性研究. 必威体育下载 , 2014, 63(2): 026201.doi:10.7498/aps.63.026201
        [12] 李震, 张锡文, 何枫.基于速度梯度张量的四元分解对若干涡判据的评价. 必威体育下载 , 2014, 63(5): 054704.doi:10.7498/aps.63.054704
        [13] 石明珠, 许廷发, 梁炯, 李相民.单幅模糊图像点扩散函数估计的梯度倒谱分析方法研究. 必威体育下载 , 2013, 62(17): 174204.doi:10.7498/aps.62.174204
        [14] 蔡志鹏, 杨文正, 唐伟东, 侯洵.大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析. 必威体育下载 , 2012, 61(18): 187901.doi:10.7498/aps.61.187901
        [15] 楼智美, 梅凤翔.力学系统的二阶梯度表示. 必威体育下载 , 2012, 61(2): 024502.doi:10.7498/aps.61.024502
        [16] 冯友君, 林中校, 张蓉竹.连续位相板均方根梯度对焦斑匀滑特性的影响. 必威体育下载 , 2011, 60(10): 104202.doi:10.7498/aps.60.104202
        [17] 洪轲, 袁玲, 沈中华, 倪晓武.利用Taylor展开法研究Lamb波在功能梯度材料中的传播特性. 必威体育下载 , 2011, 60(10): 104303.doi:10.7498/aps.60.104303
        [18] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国.磁场梯度对Hall推力器放电特性影响的实验研究. 必威体育下载 , 2010, 59(10): 7182-7190.doi:10.7498/aps.59.7182
        [19] 胡跃辉, 阴生毅, 陈光华, 吴越颖, 周小明, 周健儿, 王 青, 张文理.MWECR CVD等离子体系统梯度磁场对沉积a-Si:H薄膜特性研究. 必威体育下载 , 2004, 53(7): 2263-2269.doi:10.7498/aps.53.2263
        [20] 殷宗敏, 祝颂来.锥形梯度折射率纤维的成像特性. 必威体育下载 , 1981, 30(12): 1603-1608.doi:10.7498/aps.30.1603
      计量
      • 文章访问数:7002
      • PDF下载量:131
      • 被引次数:0
      出版历程
      • 收稿日期:2020-05-19
      • 修回日期:2020-07-12
      • 上网日期:2020-11-09
      • 刊出日期:2020-11-20

        返回文章
        返回
          Baidu
          map