搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明

Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors

Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming
PDF
HTML
导出引用
  • 钙钛矿材料可以分为 ABO 3氧化物和 ABX 3( X= Cl, Br或I)卤化物两大类, 它们都具有丰富的物理性质和优异的光电性能, 比如铁电性和光催化性能. 本文介绍了BiFeO 3MAPbI 3等铁电半导体光催化材料和异质结的制备方法, 总结了它们在光电催化方面的研究进展. 目前研究者已经针对氧化物光催化材料做了各种研究, 包括: 降低吸光层铁电材料的带隙, 制备铁电/窄带半导体吸光层异质结, 制备比表面积很大的纳米片、纳米棒或者其他纳米结构, 以便吸收更多可见光; 让铁电极化及其退极化场垂直于光催化工作电极表面, 通过铁电/半导体异质结能带弯曲提供内电场, 通过外电场进行光电催化, 从而通过内、外电场高效分离光生-电子空穴对; 通过光催化或者光电催化降解染料、分解水制氢、将CO 2转换为燃料; 通过铁电、热释电和压电协同效应提高催化效应和能量转换效率. MAPbI 3等卤素钙钛矿具有优异的半导体性质, 其铁电性可能是引起超长的少数载流子寿命和载流子扩散长度的原因. 通过优化光催化多层膜结构并添加防止电解液渗透的封装层可以避免 MAPbI 3被电解液分解, 从而制备了具有很高能量转换效率的光电催化结构. 最后, 我们分析和比较了这些钙钛矿铁电半导体在光电催化领域面临的挑战, 并展望了其应用前景.
    There are two types of perovskites, i.e. ABO 3-type oxides and ABX 3-type ( X= F, Cl, Br and I) halides. Both of them exhibit rich physical properties and excellent photoelectric properties, such as ferroelectric and photocatalytic properties. In this paper we introduce the methods of preparing the ferroelectric semiconductors (i.e. BiFeO 3and MAPbI 3) and their heterogeneous junctions for photocatalytic applications, and summarizes the research progress and applications of photocatalytic devices. Various researches about oxide photocatalytic devices have been carried out. At first, several methods have been developed to absorb more visible light, such as reducing the band gap of ferroelectric materials, preparing junction composed of ferroelectric layer and light absorption layer with narrow-bandgap semiconductor, and growing nanosheet, nanorods or other nanostructures with large specific surface areas. Second, some electric fields are introduced to effectively separate light activated electron-holes pairs. In addition to the external electric field, an inner electric field can be introduced through the ferroelectric polarization perpendicular to the surface and/or the energy band bending at the ferroelectric/semiconductor interface. Thirdly, the degradation of dyes, the decomposition of water into hydrogen and the conversion of CO 2into fuel have been realized in many photocatalytic or photoelectrocatalytic devices. Fourthly, the synergies of ferroelectric, pyroelectric and piezoelectric effects can largely increase the photocatalytic efficiency and the energy conversion efficiency. Furthermore, MAPbI 3and other halogen perovskites show excellent semiconductor properties, such as the long carrier diffusion length and long minority carrier lifetime which may originate from ferroelectric dipoles. The MAPbI 3can be applied to photocatalytic devices with a high energy conversion efficiency by optimizing the photocatalytic multi-layer structure and adding a package layer that prevents electrolyte for decomposing the MAPbI 3. Finally, we analyze the challenges of the high-efficiency photocatalytic devices and look forward to their application prospects.
        通信作者:袁国亮,yuanguoliang@njust.edu.cn
      • 基金项目:国家级-国家自然科学基金(51790492、51431006、51902159 、61874055)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

    • 材料及结构
      (铁电材料为粗体)
      铁电 带隙/eV 激励源 催化降解物 催化活性 污染性 稳定性(性能/时间) 文献
      BiFeO3纳米粉体 2.18 紫外可见光 甲基橙 8 h降解90% [14]
      FTO玻璃/BiVO4/BiFeO3/CuInS2 2.1—2.7 可见光 对硝基苯酚 Kobs= 0.02 min–1 相对稳定/5次循环 [56]
      NaNbO3纳米棒 3.3 光+超声振动 甲基蓝 98%/3次循环 [42]
      BaTiO3@Ag纳米颗粒 3.2 罗丹明B Kobs= 0.087 min–1 [43]
      BaTiO3/MoO3 3.2 紫外-可见光 罗丹明B 60 min降解86% 95%/5次循环 [44]
      BaTiO3/Ag2O纳米棒 3.2 紫外光+ 超声振动 罗丹明B
      (c= 15 mg·L–1)
      Kobs= 0.031 min–1 50%/5次循环 [18]
      BaTiO3@非晶BaTiO3–x 3.2 可见光 甲基蓝 5 h降解62.4% 97%/5次循环 [45]
      PbTiO3/TiO2纳米片 3.6 氙灯可见光 甲基蓝 Kobs= 0.057 min–1
      132.6 μmol·h–1·g–1产H2
      [46]
      KNbO3/g-C3N4 3.28 氙灯可见光 180 μmol·h–1·g–1产H2 95%/4次循环 [47]
      {001} Bi3TiNbO9纳米片 3.3 氙灯可见光 342.6 μmol·h–1·g–1产H2 [48]
      KNbO3颗粒 3.28 罗丹明B Kobs= 0.317 min–1 [49]
      KNbO3纳米片 3.07 可见光+超声振动 罗丹明B Kobs= 0.022 min–12 h降解92.6% [50]
      FTO玻璃/ZnSnO3纳米线 3.7 光+压力 甲基蓝 Kobs= 0.007 min–1 90%/1 h [51]
      FTO/ZnSnO3–x纳米线 2.4—3.7 光、超声振动、
      光和超声振动
      3562, 3453,
      3882 μmol·h–1·g–1产H2
      在振动下相对稳定/7 h [52]
      FTO/Zn1–xSnO3纳米线 2.4—3.7 紫外光+振动 甲基蓝 Kobs= 0.015 min–1 [53]
      PZT@TiO2核壳结构 3.6 光+搅拌 罗丹明B 80 min完全降解 [54]
      BiOI-BaTiO3纳米粒子 3.2 可见光 甲基橙 90 min降解95.4% [55]
      ZnO纳米线 压电 3.37 光+摇摆 甲基蓝 Kobs= 0.025 min–1 99%/3次循环 [57]
      ZnO纳米片/TiO2纳米颗粒 压电 3.37 可见光 甲基橙 Kobs= 0.038 min–1 相对稳定/11 h [58]
      Ag-ZnO纳米线 压电 3.37 光+弯折 罗丹明B Kobs= 0.052 min–1 90%/8次循环 [59]
      下载: 导出CSV

      材料和结构
      (铁电材料为粗体)
      铁电 PCE/% 带隙/eV 电解液 光源 工作电极电势 光电流密度/
      mA·cm–2
      污染性 稳定性
      (性能/时间)
      文献
      ITO/BiFeO3/Au 2.16—2.7 0.1 mol/L KCl AM1.5G 0 V vs.Ag/AgCl 0.05 [60]
      SrTiO3/SrRuO3/(111)BiFeO3 2.16—2.7 0.5 mol/L Na2SO4 AM1.5G 0 V vs. Ag/AgCl 0.08 100%/700 s [61]
      SrTiO3/CaRuO3/(111) Bi2FeCrO6 1.9—2.1 1 mol/L Na2SO4 AM1.5G 0 V vs. Ag/AgCl –2.02 [15]
      SrTiO3/SrRuO3/Bi2FeCrO6/ NiO 1.8— –2.7 1 mol/L Na2SO4 AM1.5G 1.2 V vs. RHE 0.9 95%/7 h [62]
      TiO2@PbTiO3核壳结构 3.6 氙灯100 mW·cm–2 132 μmol·g–1H2 [63]
      FTO/NaNbO3 3.37 0.5 mol/L Na2SO4 AM1.5G 1 V vs. Ag/AgCl 0.51 [64]
      ITO/KNbO3纳米片 2.86 0.5 mol/L Na2SO4 AM1.5G 0 V vs. Ag/AgCl 0.82 [50]
      (001) LiNbO3单晶 3.26 mol/LK3PO4 AM1.5G 1.23 V vs. RHE 0.15 [65]
      FTO/TiO2@BaTiO3/Ag2O 3.2 1 mol/LNaOH AM1.5G 0.8 V vs. Ag/AgCl 1.8 97%/1 h [66]
      FTO/TiO2@SrTiO3
      (10 nm四方铁电相)
      3.2 1 mol/LNaOH AM1.5G 1.23 V vs. RHE 1.43 [67]
      Glass/FTO/m-TiO2/CH3NH3PbI3/
      Spiro-MeOTAD/Au/Ni
      14.4 1.5 AM1.5G 1.0 V vs. SHE 17.4 66%/1 h [68]
      FTO/PEDOT:PSS/CH3NH3PbI3/
      PCBM/PEIE/Ag/FM
      7.7 1.5 AM1.5G 1.2 V vs. RHE 15.0 80%/1 h [69]
      ITO/NiO/CH3NH3PbI3/
      PCBM/Ag/Ti/Pt
      16.1 1.5 0.5 mol/L H2SO4 AM1.5G 1.2 V vs. RHE 18 70%/12 h [70]
      CH3NH3PbI3solar cells,
      a cell for H2O splitting
      15.7 1.5 AM1.5G 10 75%/10 h [71]
      FTO/BiVO4/black-phosphorene/
      NiOOH
      2.4—2.5 0.5 mol/L KH2PO4K2HPO4 AM1.5G 1.23 V vs. RHE 4.48 99%/60 h [72]
      FTO/H:TiO2 1.63 3.2 1 mol/LNaOH AM1.5G –0.6 V vs. Ag/AgCl 1.97 94%/28 h [73]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

    • [1] 郑旭, 李钊, 顾月良, 尹帅帅, 姜继超, 郭朴, 邱志勇, 李晓龙.BaTiO3单晶表面结构及表面液体pH值的影响. 必威体育下载 , 2024, 73(10): 106101.doi:10.7498/aps.73.20240084
      [2] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊.Zn2+和TiO2合金化过程中不同成分占比对薄膜的物理结构,光学和光催化性能的影响. 必威体育下载 , 2024, 0(0): .doi:10.7498/aps.73.20240814
      [3] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵.HfO2基铁电薄膜的结构、性能调控及典型器件应用. 必威体育下载 , 2023, 72(9): 097703.doi:10.7498/aps.72.20222221
      [4] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰.机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 必威体育下载 , 2022, 71(17): 177101.doi:10.7498/aps.71.20220601
      [5] 张利胜.基于金纳米阵列表面等离子体驱动的光催化特性. 必威体育下载 , 2021, 70(23): 235202.doi:10.7498/aps.70.20210424
      [6] 裴明辉, 田瑜, 张金星.钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 必威体育下载 , 2020, 69(21): 217709.doi:10.7498/aps.69.20200884
      [7] 周利, 王取泉.等离激元共振能量转移与增强光催化研究进展. 必威体育下载 , 2019, 68(14): 147301.doi:10.7498/aps.68.20190276
      [8] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛.三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 必威体育下载 , 2018, 67(16): 167802.doi:10.7498/aps.67.20180663
      [9] 王逸飞, 李晓薇.石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 必威体育下载 , 2018, 67(11): 116301.doi:10.7498/aps.67.20172220
      [10] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟.铁电材料光催化活性的研究进展. 必威体育下载 , 2017, 66(16): 167702.doi:10.7498/aps.66.167702
      [11] 宋志浩, 王世荣, 肖殷, 李祥高.新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 必威体育下载 , 2015, 64(3): 033301.doi:10.7498/aps.64.033301
      [12] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩.基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 必威体育下载 , 2015, 64(13): 137601.doi:10.7498/aps.64.137601
      [13] 赵娟, 胡慧芳, 曾亚萍, 程彩萍.花状硫化铜级次纳米结构的制备及可见光催化活性研究. 必威体育下载 , 2013, 62(15): 158104.doi:10.7498/aps.62.158104
      [14] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德.基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 必威体育下载 , 2012, 61(13): 138801.doi:10.7498/aps.61.138801
      [15] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪.有机发光器件的磁电导效应. 必威体育下载 , 2012, 61(11): 117106.doi:10.7498/aps.61.117106
      [16] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东.太阳能电池在微生物燃料电池中的光电催化性能研究. 必威体育下载 , 2012, 61(24): 248801.doi:10.7498/aps.61.248801
      [17] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳.Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 必威体育下载 , 2012, 61(5): 053101.doi:10.7498/aps.61.053101
      [18] 陈应天, 何祚庥.强辐射催化法提纯多晶硅. 必威体育下载 , 2011, 60(7): 078104.doi:10.7498/aps.60.078104
      [19] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖.掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 必威体育下载 , 2011, 60(11): 117106.doi:10.7498/aps.60.117106
      [20] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶.溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 必威体育下载 , 2007, 56(8): 5003-5008.doi:10.7498/aps.56.5003
    计量
    • 文章访问数:31889
    • PDF下载量:1078
    • 被引次数:0
    出版历程
    • 收稿日期:2020-02-25
    • 修回日期:2020-04-06
    • 刊出日期:2020-06-20

      返回文章
      返回
        Baidu
        map