搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

叶鹏

Gauge theory of strongly-correlated symmetric topological Phases

Ye Peng
PDF
HTML
导出引用
  • 在有对称性保护的条件下, 拓扑能带绝缘体等自由费米子体系的拓扑不变量可以在能带结构计算中得到. 但是, 为了得到强关联拓扑物质态的拓扑不变量, 我们需要全新的理论思路. 最典型的例子就是分数量子霍尔效应: 其低能有效物理一般可以用Chern-Simons拓扑规范场论来计算得到; 霍尔电导的量子化平台蕴含着十分丰富的强关联物理. 本文将讨论存在于玻色和自旋模型中的三大类强关联拓扑物质态: 本征拓扑序、对称保护拓扑态和对称富化拓扑态. 第一类无需考虑对称性, 后两者需要考虑对称性. 理论上, 规范场论是一种非常有效的研究方法. 本文将简要回顾用规范场论来研究强关联拓扑物质态的一些研究进展. 具体内容集中在“投影构造理论”、“低能有效理论”、“拓扑响应理论”三个方面.
    In the presence of symmetry-protection, topological invariants of topological phases of matter in free fermion systems, e.g., topological band insulators, can be directly computed via the properties of band structure. Nevertheless, it is usually difficult to extract topological invariants in strongly-correlated topological phases of matter in which band structure is not well-defined. One typical example is the fractional quantum Hall effect whose low-energy physics is governed by Chern-Simons topological gauge theory and Hall conductivity plateaus involve extremely fruitful physics of strong correlation. In this article, we focus on intrinsic topological order (iTO), symmetry-protected topological phases (SPT), and symmetry-enriched topological phases (SET) in boson and spin systems. Through gauge field-theoretical approach, we review some research progress on these topological phases of matter from the aspects of projective construction, low-energy effective theory and topological response theory.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

    • 拟设 完全被$f_1$填充的陈-能带 完全被$f_2$填充的陈-能带 自旋矢量$q^T_s$ 电荷矢量$q^T_c$
      $A1$ $\uparrow+, \downarrow+, \uparrow-, \downarrow-$ $(2, 2)$ $\uparrow+, \downarrow+, \uparrow-, \downarrow-$ $(2, 2)$ $\left(\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}~~\dfrac{1}{2}~~-\dfrac{1}{2}\right)$ $(1~~1~~1~~1~~1~~1~~1~~1)$
      $A2$ $\uparrow+, \downarrow-$ $(1, 1)$ $\uparrow+, \downarrow-$ $(1, 1)$ $\left( {1}/{2}~~- {1}/{2}~~ {1}/{2}~~ -{1}/{2}\right)$ $(1~~1~~1~~1)$
      $A3$ $\uparrow+, \downarrow-$ $(1, 1)$ $\downarrow+, \uparrow-$ $(1, 1)$ $\left(1/{2}~~- {1}/{2}~~- {1}/{2}~~ {1}/{2}\right)$ $(1~~1~~1~~1)$
      $A4$ $\uparrow+, \downarrow-$ $(1, 1)$ $\left( {1}/{2}~~- {1}/{2}\right)$ $(1~~1)$
      下载: 导出CSV

      U 任意一个格点上的物理希尔伯特空间基矢$ [f_1]n_{i, 1 \uparrow}, n_{i, 1 \downarrow}, n_{i, 2 \uparrow}, n_{i, 2 \downarrow}[f_2] $ 费米子填充总数要求
      $U_1$ $(0, 0, 0, 0)$, $(0, 1, 0, 1)$, $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 1, 1)\, $ $N^{f1}=N^{f2} $
      $U_2$ $(0, 0, 0, 0)$, $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 1, 1, 1)\, $ $N^{f1}_{\uparrow} = N^{f2}_{\downarrow}, $ $N^{f1}_{\downarrow}=N^{f2}_{\uparrow}$
      $U_3$ $(0, 0, 0, 0)$, $(0, 1, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 1, 1)\, $ $N^{f1}_{ \uparrow}=N^{f2}_{ \uparrow}, $ $N^{f1}_{ \downarrow}=N^{f2}_{\downarrow}$
      $U_4$ $(0, 0, 1, 1)$, $(0, 1, 0, 1)$, $(1, 0, 1, 0)$, $(1, 1, 0, 0)$ $N^{f1}_{\uparrow}+N^{f2}_{\downarrow}=N_{\rm latt}$, $N^{f2}_{\uparrow}+ N^{f1}_{\downarrow}=N_{\rm att}$
      $U_5$ $(1, 0, 0, 0)$, $(0, 1, 0, 0)$, $(0, 0, 1, 0)$, $(0, 0, 0, 1)$ $ N^{f1} + N^{f2}=N_{\rm latt}$
      $U_6$ $(1, 0)$, $(0, 1)$ $ N^{f1} =N_{\rm latt}$
      $U_7$ $(0, 0)$, $(1, 1)$ $N^{f1}_{\uparrow} = N^{f1}_{\downarrow }$
      下载: 导出CSV

      对称群G 拓扑规范场论与分类
      $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}$ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^2_Ib^I\wedge \, {\rm d}a^I+ p_1\displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^2~~(\mathbb{Z}_{N_{12}} )$ ; $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^2_Ib^I\wedge \, {\rm d}a^I+ p_2\displaystyle\int a^2\wedge a^1\wedge \, {\rm d}a^1 ~(\mathbb{Z}_{N_{12}}) $
      $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\times\mathbb{Z}_{N_3} $ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+ p_1 \displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^3~~(\mathbb{Z}_{N_{123}})$ ; $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+ p_2 \displaystyle\int a^2\wedge a^3\wedge \, {\rm d}a^1~~(\mathbb{Z}_{N_{123}}) $
      $\prod^4_I\mathbb{Z}_{N_I} $ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^4_Ib^I\wedge \, {\rm d}a^I+p \displaystyle\int a^1\wedge a^2\wedge a^3\wedge a^4~~ ( \mathbb{Z}_{N_{1234}} )$
      $\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\times {U}(1)$ $\dfrac{1}{2{\text{π}}}\displaystyle\int \sum^3_Ib^I\wedge \, {\rm d}a^I+p\displaystyle\int a^1\wedge a^2\wedge \, {\rm d}a^3~~ (\mathbb{Z}_{N_{12}})$
      下载: 导出CSV

      规范群$G_g$ twisted拓扑项 对称群$G_s$ SET分类
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 n + 1}$ ${{\mathbb{Z}}_1}$
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 n}$ $ {({\mathbb{Z}}_2)^2}\oplus {\mathbb{Z}}_1$
      ${\mathbb{Z}}_3$ ${\mathbb{Z}}_{3 n}$ $({\mathbb{Z}}_3)^2\oplus {\mathbb{Z}}_1 \oplus {\mathbb{Z}}_1$
      ${\mathbb{Z}}_3$ ${\mathbb{Z}}_{3 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{4 n+2}$ $ ({\mathbb{Z}}_2)^2\oplus {\mathbb{Z}}_1$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{4 n}$ $ ({\mathbb{Z}}_4)^2\oplus ({\mathbb{Z}}_2)^2\oplus {\mathbb{Z}}_1 \oplus {\mathbb{Z}}_1 $
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6\oplus ({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^2$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 2) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (0, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 0) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 4) ${\mathbb{Z}}_{2 n + 1}$ ${\mathbb{Z}}_1$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (0, 0) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2\oplus 2({\mathbb{Z}}_4)^2\oplus4({\mathbb{Z}}_2)^2 \oplus ({\mathbb{Z}}_2)^6$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 0) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_4$ (4, 4) ${\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_2)^4\times ({\mathbb{Z}}_4)^2$
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 m + 1} \times {\mathbb{Z}}_{2 n + 1}$ $({\mathbb{Z}}_{2\gcd(2 m + 1, 2 n + 1)})^2$
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 m + 1} \times {\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_{\gcd(2 m + 1, 2 n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(2 m + 1, 2 n)})^2 $
      ${\mathbb{Z}}_2$ ${\mathbb{Z}}_{2 m} \times {\mathbb{Z}}_{2 n}$ $({\mathbb{Z}}_2)^6\times({\mathbb{Z}}_{2\gcd(m, n)})^2\oplus ({\mathbb{Z}}_{2\gcd(2 m, n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(m, 2 n)})^2 \oplus ({\mathbb{Z}}_{2\gcd(m, n)})^2$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{2 n + 1} \times {\mathbb{Z}}_{2 n + 1}$ $16({\mathbb{Z}}_{2 n + 1})^2$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{2(2 n + 1)} \times {\mathbb{Z}}_{2(2 n + 1)}$ $4({\mathbb{Z}}_2)^6 \times ({\mathbb{Z}}_{2(2 n + 1)})^2\oplus 12({\mathbb{Z}}_{2(2 n + 1)})^2$
      ${\mathbb{Z}}_4$ ${\mathbb{Z}}_{4 n} \times {\mathbb{Z}}_{4 n}$ $({\mathbb{Z}}_4)^6 \times ({\mathbb{Z}}_{4 n})^2\oplus 12({\mathbb{Z}}_{4 n})^2 \oplus 3[ ({\mathbb{Z}}_{4 n})^2\times ({\mathbb{Z}}_2)^6]$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (0, 0) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}\oplus 6({\mathbb{Z}}_2)^8 \oplus 3({\mathbb{Z}}_2)^6 \oplus 6({\mathbb{Z}}_2)^4$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 0) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}$
      ${\mathbb{Z}}_2\times {\mathbb{Z}}_2$ (2, 2) ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_2$ $({\mathbb{Z}}_2)^{18}$
      下载: 导出CSV

      投影对称群(PSG) 规范群$G_g$ 对称群$G_s$ 三维体内($\varSigma^3$)
      的规范理论
      表面($\partial\varSigma^3$)的反常
      玻色理论
      二维平面($\varSigma^2$)的正常Chern-Simons理论的$K_G$-矩阵
      ${\mathbb{Z}}_N \rtimes{\mathbb{Z}}^T_2$ ${\mathbb{Z}}_N$ ${\mathbb{Z}}^T_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c+$
      $\dfrac{\theta_c}{8{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^c_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}^T_2$破缺的 $\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j$
      ${\mathbb{Z}}^T_2$破缺的$\varSigma^2$:
      $\left(\begin{array}{*{20}{c}} {2 p}&N\\ N&0 \end{array}\right)$
      ${\mathbb{Z}}_N\!\times\!{\mathbb{Z}}^T_2$ ${\mathbb{Z}}_N$ ${\mathbb{Z}}^T_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
      $\dfrac{\theta_s}{8{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^s_\rho$
      ${\mathbb{Z}}^T_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$
      ${\mathbb{Z}}^T_2$破缺的$\varSigma^2$:
      $ \left({\begin{array}{*{20}{c}} 2 p &N \\ N & 0 \end{array}} \right)$
      ${\mathbb{Z}}_N \!\times\! [U(1)_{S^z}\rtimes{\mathbb{Z}}_2]$ ${\mathbb{Z}}_N\!\times\! U(1)_{S^z}$ ${\mathbb{Z}}_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c +$
      $\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j$
      ${\mathbb{Z}}_2$破缺的$\varSigma^2$:
      $ \left({\begin{array}{*{20}{c}} 2 p_1 &N & p_{12}& 0\\ N & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & 0\\ 0 & 0 &0 & 0 \end{array}} \right)$
      $U(1)_C \!\times\! [{\mathbb{Z}}_N \rtimes{\mathbb{Z}}_2]$ $U(1)_C\!\times\!{\mathbb{Z}}_N$ ${\mathbb{Z}}_2$ $\dfrac{N}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
      $\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$
      ${\mathbb{Z}}_2$破缺的$\varSigma^2$:
      $ \left({\begin{array}{*{20}{c}} 2 p_1 &0 & p_{12}& 0\\ 0 & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & N\\ 0 & 0 &N & 0 \end{array}} \right)$
      ${\mathbb{Z}}_{N_1} \!\times\! [{\mathbb{Z}}_{N_2}\rtimes{\mathbb{Z}}_2]$ ${\mathbb{Z}}_{N_1}\!\times\! {\mathbb{Z}}_{N_2}$ ${\mathbb{Z}}_2$ $\dfrac{N_1}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^c_{\mu\nu}\partial_\lambda A_\rho^c+$
      $\dfrac{N_2}{4{\text{π}}} \epsilon^{\mu\nu\lambda\rho} B^s_{\mu\nu}\partial_\lambda A_\rho^s+$
      $\dfrac{\theta_0}{4{\text{π}}^2} \epsilon^{\mu\nu\lambda\rho}\partial_\mu A^s_\nu \partial_\lambda A^c_\rho$
      ${\mathbb{Z}}_2$破缺的$\partial\varSigma^3$:
      $\dfrac{N_1}{2{\text{π}}}\partial_0 \phi^c \epsilon^{ij}\partial_i \lambda^c_j+$
      $\dfrac{N_2}{2{\text{π}}}\partial_0 \phi^s \epsilon^{ij}\partial_i \lambda^s_j$
      ${\mathbb{Z}}_2$破缺的$\varSigma^2$:
      $\begin{aligned} & {}\\ & \left({\begin{array}{*{20}{c}} 2 p_1 &N_1 & p_{12}& 0\\ N_1 & 0 &0 & 0\\ p_{12} & 0 &2 p_2 & N_2\\ 0 & 0 &N_2 & 0 \end{array}} \right)\end{aligned}$
      下载: 导出CSV

      轴子角 对称群 三维体内($\varSigma^3$)的响应 二维表面($\partial\varSigma^3$)的反常响应 二维平面($\varSigma^2$)的响应
      $ \theta_c=2{\text{π}}+4{\text{π}} k$
      (带电玻色系统)
      $U(1)_C\rtimes{\mathbb{Z}}^{\rm T}_2$ 电荷-威腾效应:
      $N^c=n^c+N^c_m$
      量子电荷霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\partial\varSigma^3$):
      $\widetilde{\sigma}^{c}=(1+2 k)\dfrac{1}{2{\text{π}}}$
      量子电荷霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\varSigma^2$)
      $\sigma^c=2 k\dfrac{1}{2{\text{π}}}$
      $ \theta_s=2{\text{π}}+4{\text{π}} k$
      (整数自旋的
      玻色系统)
      $U(1)_{S^z} \times {\mathbb{Z}}^{\rm T}_2$ 自旋-威腾效应:
      $N^s=\displaystyle \sum_i q_in_i^s+N^s_m\sum_{i}q_i^2$
      量子自旋霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\partial\varSigma^3$):
      $\widetilde{\sigma}^{s}=(1+2 k)\dfrac{1}{2{\text{π} } }\displaystyle\sum_i{q_i^2}$
      量子自旋霍尔效应
      (${\mathbb{Z}}^{\rm T}_2$破缺的$\varSigma^2$)
      $\sigma^s=2 k\dfrac{1}{2{\text{π} } }\displaystyle\sum_i{q_i^2}$
      $ \theta_0={\text{π}}+2{\text{π}} k$
      (带电和整数自旋
      的玻色系统)
      $U(1)_C \!\times\! [U(1)_{S^z} \!\rtimes\! {\mathbb{Z}}_2]$ 交互-威腾效应: $N^c=n^c+\dfrac{1}{2}N^s_m$;
      $N^s=n^s_{+}-n^s_{-}+\dfrac{1}{2}N^c_m$
      量子电荷-自旋/
      自旋-电荷效应
      (${\mathbb{Z}}_2$破缺的 $\partial\varSigma^3$):
      $\widetilde{\sigma}^{cs}=\widetilde{\sigma}^{sc}=\left(\dfrac 1 2+k\right)\dfrac{1}{2{\text{π}}}$
      量子电荷-自旋/
      效应 自旋-电荷
      (${\mathbb{Z}}_2$破缺的$\varSigma^2$):
      $\sigma^{cs}=\sigma^{sc}=k\dfrac{1}{2{\text{π}}}$
      下载: 导出CSV

      时空维度 空间对称群$G_s$ 内部对称群$G_i$ 不可约的Wen-Zee拓扑项$S$ 角动量/自旋${\cal{J}}$
      $(2 + 1)$维 $SO(2)$ $U(1)$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}A$, $k \in \mathbb{Z}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^2} {\rm d}A$
      $(2 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}A$, $k \in \mathbb{Z}_{N_{01}}$, $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^2} {\rm d}A$
      $(2 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} $ $k \dfrac{ N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int \omega \wedge A^1 \wedge A^2$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{ N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int_{M^2} A^1 \wedge A^2$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $k \dfrac{N_0 N_1}{ (2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A \wedge {\rm d}A$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{ N_1}{ (2{\text{π}})^2 N_{01}} \displaystyle\int _{M^3} A \wedge {\rm d}A$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1}$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int A \wedge \omega \wedge {\rm d} \omega$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{ N_1}{2{\text{π}}^2 N_{01}} \displaystyle\int_{M^3} A \wedge {\rm d}\omega$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times U(1)$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A^1 \wedge {\rm d}A^2$, $k \in \mathbb{Z}_{N_{01}}$ $k \dfrac{N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int_{M^3} A^1 \wedge {\rm d}A^2$
      $(3 + 1)$维 $SO(2)$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{12}} \displaystyle\int A^1 \wedge A^2 \wedge {\rm d} \omega$, $k \in \mathbb{Z}_{N_{12}}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{12}} \displaystyle\int_{M^3} {\rm d} (A^1 \wedge A^2)$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int \omega \wedge A^1 \wedge {\rm d}A^2$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{N_1}{(2{\text{π}})^2 N_{01}} \displaystyle\int_{M^3} A^1 \wedge {\rm d}A^2$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_2}{(2{\text{π}})^2 N_{02}} \displaystyle\int \omega \wedge A^2 \wedge {\rm d}A^1$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{ N_2}{(2{\text{π}})^2 N_{02}} \displaystyle\int_{M^3} A^2 \wedge {\rm d}A^1$
      $(3 + 1)$维 $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3}$ $k \dfrac{N_0 N_1 N_2 N_3}{(2{\text{π}})^3 N_{0123}} \displaystyle\int \omega \wedge A^1 \wedge A^2 \wedge A^3$,
      $k \in \mathbb{Z}_{N_{0123}}$
      $k \dfrac{ N_1 N_2 N_3}{(2{\text{π}})^3 N_{0123}} \displaystyle\int_{M^3} A^1 \wedge A^2 \wedge A^3$
      $(3 + 1)$维($*$) $SO(2)$ $U(1)$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}B$, $k \in \mathbb{Z}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^3} {\rm d}B$
      $(3 + 1)$维($*$) $C_{N_0}$ ${\mathbb{Z}}_{N_1}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int \omega \wedge {\rm d}B$, $k \in \mathbb{Z}_{N_{01}}$ $\dfrac{k}{2{\text{π}}} \displaystyle\int_{M^3} {\rm d}B$
      $(3 + 1)$维($*$) $C_{N_0}$ $\mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$ $k \dfrac{N_0 N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int \omega \wedge A \wedge B$, $k \in \mathbb{Z}_{N_{012}}$ $k \dfrac{N_1 N_2}{(2{\text{π}})^2 N_{012}} \displaystyle\int_{M^3} A \wedge B$
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

    • [1] 李锦芳, 何东山, 王一平.一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 必威体育下载 , 2024, 73(4): 044203.doi:10.7498/aps.73.20231519
      [2] 刘恩克.磁序与拓扑的耦合: 从基础物理到拓扑磁电子学. 必威体育下载 , 2024, 73(1): 017103.doi:10.7498/aps.73.20231711
      [3] 顾昭龙, 李建新.量子多体系统中的拓扑序与分数化激发. 必威体育下载 , 2024, 73(7): 070301.doi:10.7498/aps.73.20240222
      [4] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平.一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 必威体育下载 , 2023, 72(24): 244204.doi:10.7498/aps.72.20231321
      [5] 胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平.声学蜂窝结构中的拓扑角态. 必威体育下载 , 2022, 71(5): 054301.doi:10.7498/aps.71.20211848
      [6] 王伟, 王一平.一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 必威体育下载 , 2022, 71(19): 194203.doi:10.7498/aps.71.20220675
      [7] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇.自旋-1/2量子罗盘链的量子相与相变. 必威体育下载 , 2022, 71(3): 030302.doi:10.7498/aps.71.20211433
      [8] 强晓斌, 卢海舟.磁场中拓扑物态的量子输运. 必威体育下载 , 2021, 70(2): 027201.doi:10.7498/aps.70.20200914
      [9] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇.自旋-1/2量子罗盘链的量子相与相变. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211433
      [10] 顾开元, 罗天创, 葛军, 王健.拓扑材料中的超导. 必威体育下载 , 2020, 69(2): 020301.doi:10.7498/aps.69.20191627
      [11] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金.基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 必威体育下载 , 2020, 69(18): 184101.doi:10.7498/aps.69.20200415
      [12] 强晓斌, 卢海舟.磁场中拓扑物态的量子输运. 必威体育下载 , 2020, (): .doi:10.7498/aps.69.20200914
      [13] 梁奇锋, 王志, 川上拓人, 胡晓.拓扑超导Majorana束缚态的探索. 必威体育下载 , 2020, 69(11): 117102.doi:10.7498/aps.69.20190959
      [14] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙.基于声子晶体板的弹性波拓扑保护边界态. 必威体育下载 , 2020, 69(15): 156201.doi:10.7498/aps.69.20200542
      [15] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒.含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 必威体育下载 , 2020, 69(9): 090302.doi:10.7498/aps.69.20191773
      [16] 王一鹤, 张志旺, 程营, 刘晓峻.声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 必威体育下载 , 2019, 68(22): 227805.doi:10.7498/aps.68.20191363
      [17] 罗开发, 余睿.电路中的拓扑态. 必威体育下载 , 2019, 68(22): 220305.doi:10.7498/aps.68.20191398
      [18] 陈西浩, 王秀娟.一维扩展量子罗盘模型的拓扑序和量子相变. 必威体育下载 , 2018, 67(19): 190301.doi:10.7498/aps.67.20180855
      [19] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟.时间反演对称性破缺系统中的拓扑零能模. 必威体育下载 , 2017, 66(22): 220201.doi:10.7498/aps.66.220201
      [20] 耿虎, 计青山, 张存喜, 王瑞.缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 必威体育下载 , 2017, 66(12): 127303.doi:10.7498/aps.66.127303
    计量
    • 文章访问数:19557
    • PDF下载量:807
    • 被引次数:0
    出版历程
    • 收稿日期:2020-02-10
    • 修回日期:2020-03-10
    • 刊出日期:2020-04-05

      返回文章
      返回
        Baidu
        map