搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋

    Optical properties and microstructure of two Ge-Sb-Se thin films

    Pan Lei, Song Bao-An, Xiao Chuan-Fu, Zhang Pei-Qing, Lin Chang-Gui, Dai Shi-Xun
    PDF
    HTML
    导出引用
    • 提出一种综合利用区域逼近法和柯西拟合法精确获取Ge 20Sb 15Se 65薄膜和Ge 28Sb 12Se 60薄膜透射光谱范围内任意波长处折射率与色散的多点柯西法, 并从理论上证明了该方法的准确性. 实验上, 采用磁控溅射法制备了这两种Ge—Sb—Se薄膜, 利用傅里叶红外光谱仪测得了透射光谱曲线, 运用分段滤波的方法去除噪声, 然后使用多点柯西法得到了这两种薄膜在500—2500 nm波段的折射率、色散、吸收系数和光学带隙. 结果表明Ge 28Sb 12Se 60薄膜的折射率和吸收系数大于Ge 20Sb 15Se 65薄膜, Ge 28Sb 12Se 60薄膜的光学带隙小于Ge 20Sb 15Se 65薄膜. 最后, 利用拉曼光谱对两种薄膜的微观结构进行了表征, 从原子之间的键合性质解释了这两种硫系薄膜不同光学性质的原因.
      Multipoint Cauchy method (MCM) is presented to investigate the refractive index and dispersion for each of Ge 20Sb 15Se 65and Ge 28Sb 12Se 60chalcogenide thin films at any wavelength in the transmission spectrum based on the regional approach method and Cauchy fitting. We theoretically calculate and compare the refractive index and dispersion curves obtained by using six different models. The results show that the most accurate results are obtained by the MCM. Two Ge—Sb—Se films are prepared by magnetron sputtering experimentally, and transmission spectrum curves are measured by Fourier infrared spectrometer, the noise is removed by segmental filtering and then the refractive index, dispersion, absorption coefficient, and optical band gap of the two films ina range of 500–2500 nm are obtained by the MCM. The results show that the refractive index of Ge 28Sb 12Se 60film is larger than that of Ge 20Sb 15Se 65film, which is caused by the higher polarizability and density of the former. The refractive indexes of both films decrease with wavelength increasing, so the long waves travel faster than short waves in the two films. The optical band gap of Ge 28Sb 12Se 60film (1.675 eV) is smaller than that of Ge 20Sb 15Se 65film (1.729 eV), and the corresponding wavelengths of the two are 740.3 nm and 717.2 nm. Finally, the microstructures of the two films are characterized by Raman spectra, and the reasons why the two chalcogenide films have different optical properties are explained from the bonding properties between the atoms.
          通信作者:宋宝安,songbaoan@nbu.edu.cn
        • 基金项目:省部级-浙江省自然科学基金(LY19F050003)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

      • 名称 模型
        Cauchy $n = A + \dfrac{B}{{{\lambda ^2}}} + \dfrac{C}{{{\lambda ^4}}}$
        二阶归一化标准Sellmeier $n = \sqrt {1 + \dfrac{{A \cdot {\lambda ^2}}}{{{\lambda ^2} - B}} + \dfrac{{C \cdot {\lambda ^2}}}{{{\lambda ^2} - D}}} $
        三阶归一化标准Sellmeier $n = \sqrt {1 + \dfrac{{A \cdot {\lambda ^2}}}{{{\lambda ^2} - B}} + \dfrac{{C \cdot {\lambda ^2}}}{{{\lambda ^2} - D}} + \dfrac{{E \cdot {\lambda ^2}}}{{{\lambda ^2} - F}}} $
        二阶非标准形式的Sellmeier $n = \sqrt {A + \dfrac{{B \cdot {\lambda ^2}}}{{{\lambda ^2} - C}} + D \cdot {\lambda ^2}} $
        Conrady $n = A + \dfrac{B}{\lambda } + \dfrac{C}{{{\lambda ^{3.5}}}}$
        Herzberger $n = A + B \cdot {\lambda ^2} + C \cdot {\lambda ^2} + \dfrac{D}{{\left( {{\lambda ^2} - 0.028} \right)}} + \dfrac{E}{{{{\left( {{\lambda ^2} - 0.028} \right)}^2}}}$
        下载: 导出CSV

        λ TM Tm n d m0 m n0 d0
        972.4 0.9202 0.5007 2.9173 6.001 6.0 2.9169 1000.0
        911.2 0.9199 0.4904 2.9613 6.501 6.5 2.9611 1000.0
        859.0 0.9193 0.4801 3.0066 1000.0 7.002 7.0 3.0062 1000.0
        814.1 0.9183 0.4697 3.0527 1000.4 7.501 7.5 3.0526 1000.1
        774.9 0.9165 0.4591 3.0996 1000.1 8.002 8.0 3.0993 1000.0
        740.5 0.9134 0.4485 3.1471 999.5 8.502 8.5 3.1468 1000.0
        710.0 0.9080 0.4376 3.1951 999.7 9.002 9.0 3.1947 1000.0
        682.8 0.8984 0.4260 3.2435 999.4 9.502 9.5 3.2430 999.9
        658.4 0.8818 0.4132 3.2921 1000.2 10.002 10.0 3.2917 1000.0
        636.3 0.8530 0.3982 3.3410 999.3 10.503 10.5 3.3402 999.9
        616.3 0.8050 0.3796 3.3898 999.6 11.003 11.0 3.3893 999.9
        598.1 0.7252 0.3546 3.4335 1020.4 11.483 11.5 3.4387 1001.6
        581.3 0.6127 0.3191 3.4878 1000.6 12.002 12.0 3.4874 1000.0
        565.9 0.4595 0.2678 3.5368 981.9 12.502 12.5 3.5365 1000.0
        551.7 0.2879 0.1965 3.5856 1001.6 13.001 13.0 3.5857 1000.1
        注: $ \qquad \quad \overline d = 1000.2;{\sigma _1} = 7.58;\overline {{d_0}} = 1000.1;{\sigma _0} = 0.40$.
        下载: 导出CSV

        A B C D E F
        Cauchy 2.6006 2.9900 × 105 2.4107 × 108
        二阶归一化标准Sellmeier 6.0592 1.3837 × 105 0.5371 1.3837 × 105
        三阶归一化标准Sellmeier 11.1212 6.4542 × 104 5.9297 6.4455 × 104 –11.3546 –4.9139 × 104
        二阶非标准形式的Sellmeier –30.1052 36.8509 4.3322 × 104 –0.0079
        Conrady 2.3534 502.8603 1.2718 × 109
        Herzberger 4.3450 –3.1408 × 10–8 1.7525 × 10–12 3.0038 × 105 9.0228 × 1010
        下载: 导出CSV

        λ Δncauchy ΔnSel2 ΔnSel3 Δnsel2非 ΔnConrady ΔnHerzberger ΔnMCM
        580 –0.0002 0.0018 –0.0005 –0.0003 –0.0007 –0.0050 –0.0001
        600 –0.0003 –0.0107 –0.0007 –0.0005 –0.0014 0.0081 –0.0002
        620 –0.0004 –0.0180 –0.0008 –0.0006 –0.0016 0.0162 –0.0002
        640 –0.0004 –0.0216 –0.0007 –0.0006 –0.0015 0.0201 –0.0003
        660 –0.0004 –0.0226 –0.0006 –0.0005 –0.0012 0.0207 –0.0003
        680 –0.0004 –0.0218 –0.0005 –0.0005 –0.0008 0.0186 –0.0003
        700 –0.0004 –0.0197 –0.0003 –0.0004 –0.0003 0.0146 –0.0003
        720 –0.0004 –0.0167 –0.0002 –0.0003 0.0001 0.0091 –0.0003
        740 –0.0004 –0.0131 –0.0001 –0.0003 0.0005 0.0028 –0.0003
        760 –0.0004 –0.0090 0.0000 –0.0002 0.0008 –0.0038 –0.0003
        780 –0.0004 –0.0047 0.0000 –0.0002 0.0010 –0.0103 –0.0003
        800 –0.0004 –0.0002 0.0000 –0.0002 0.0011 –0.0160 –0.0003
        820 –0.0004 0.0043 0.0000 –0.0002 0.0011 –0.0207 –0.0003
        840 –0.0003 0.0089 0.0000 –0.0002 0.0009 –0.0238 –0.0003
        860 –0.0003 0.0134 –0.0001 –0.0002 0.0007 –0.0249 –0.0003
        880 –0.0003 0.0178 –0.0002 –0.0002 0.0004 –0.0236 –0.0003
        900 –0.0003 0.0222 –0.0003 –0.0002 –0.0001 –0.0196 –0.0003
        920 –0.0002 0.0264 –0.0004 –0.0003 –0.0006 –0.0123 –0.0003
        940 –0.0002 0.0305 –0.0006 –0.0004 –0.0012 –0.0014 –0.0003
        960 –0.0002 0.0345 –0.0007 –0.0004 –0.0019 0.0134 –0.0003
        $\begin{aligned}{\text{注}}:\; & \Delta {n_{{\rm{Cauchy}}}} = 0.0003;\sigma {n_{{\rm{Cauchy}}}} = 0.0002;\Delta {n_{{\rm{Sel2}}}} = 0.0253;\sigma {n_{{\rm{Sel2}}}} = 0.0273;\\ &\Delta {n_{{\rm{Sel3}}}} = 0.0006;\sigma {n_{{\rm{Sel3}}}} = 0.0010;\Delta {n_{{\rm{Sel}}2{\simfont\text{非}}}} = 0.0005;\sigma {n_{{\rm{Sel}}2{\simfont\text{非}}}} = 0.0005;\\ & \Delta {n_{{\rm{Conrady}}}} = 0.0016;\sigma {n_{{\rm{Conrady}}}} = 0.0022;\Delta {n_{{\rm{Herzberger}}}} = 0.0226;\sigma {n_{{\rm{Herzberger}}}} = 0.0225;\\ & \Delta {n_{{\rm{MCM}}}} = 0.0002;\sigma {n_{{\rm{MCM}}}} = 0.0001 .\end{aligned}$
        下载: 导出CSV

        波长/nm Ge20Sb15Se65薄膜 Ge28Sb12Se60薄膜
        Texp TM m n Texp TM m n
        600 0.2449 0.2682 8.7331 2.6902 0.0009 0.0253 13.3793 2.8670
        620 0.3463 0.4036 8.0131 2.6530 0.0417 0.0726 12.7620 2.8259
        640 0.4987 0.5496 7.4160 2.6208 0.1107 0.0957 12.2073 2.7902
        660 0.4749 0.6845 6.9106 2.5929 0.2449 0.2519 11.7057 2.7592
        680 0.7724 0.7891 6.4760 2.5685 0.2914 0.3957 11.2495 2.7320
        700 0.6566 0.8552 6.0972 2.5472 0.5222 0.5266 11.0259 2.7081
        750 0.9088 0.9096 5.7634 2.5041 0.7469 0.7853 10.1068 2.6597
        800 0.6160 0.9219 5.4665 2.4720 0.6155 0.9123 9.3455 2.6233
        900 0.6199 0.9321 4.9602 2.4285 0.8667 0.9681 8.1494 2.5735
        1000 0.7666 0.9388 4.5433 2.4014 0.7547 0.9735 7.2448 2.5420
        1100 0.8085 0.9429 4.1932 2.3835 0.6124 0.9773 6.5316 2.5210
        1200 0.7580 0.9455 3.8945 2.3711 0.9678 0.9805 5.9523 2.5062
        1300 0.6850 0.9472 3.6364 2.3622 0.6186 0.9813 5.4709 2.4955
        1400 0.9418 0.9480 3.4109 2.3556 0.9556 0.9806 5.0638 2.4875
        1500 0.7814 0.9482 3.2121 2.3506 0.7282 0.9801 4.7145 2.4813
        1600 0.6521 0.9479 3.0356 2.3466 0.6430 0.9800 4.4112 2.4765
        1700 0.7244 0.9474 2.8776 2.3435 0.8853 0.9800 4.1452 2.4726
        1800 0.8914 0.9470 3.1213 2.3410 0.9383 0.9801 3.9099 2.4694
        1900 0.9384 0.9470 2.9544 2.3389 0.7164 0.9801 3.7002 2.4668
        2000 0.8249 0.9476 2.8046 2.3372 0.6282 0.9800 3.5121 2.4647
        2100 0.7121 0.9491 2.6694 2.3358 0.6868 0.9800 3.2838 2.4628
        2200 0.6614 0.9518 2.5468 2.3345 0.8411 0.9801 3.1325 2.4613
        2300 0.6679 0.9559 2.4349 2.3335 0.9705 0.9804 2.9947 2.4599
        2400 0.7188 0.9617 2.3326 2.3326 0.9441 0.9809 2.8686 2.4588
        下载: 导出CSV

        拉曼峰位/cm–1 振动模式
        160 Se2Sb-SbSe2结构中的Sb—Sb同极键的振动
        170 Ge2Se6/2结构中的Ge—Ge同极键的伸缩振动
        197 SbSe3/2三角锥结构中的Sb—Se键的E1模式振动
        203 共顶角GeSe4/2四面体中的Ge—Se键的V1模式振动
        215 共边GeSe4/2四面体中的Ge—Se键振动
        235 Sen环结构中的Se—Se键振动
        256 Sen链结构中的Se—Se键振动
        270 Ge-GemSe4-m结构中的Ge—Ge同极键的振动
        303 GeSe4四面体的F2型不对称振动
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

      • [1] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华.ZnTe结构相变、电子结构和光学性质的研究. 必威体育下载 , 2015, 64(22): 227802.doi:10.7498/aps.64.227802
        [2] 李建华, 崔元顺, 曾祥华, 陈贵宾.ZnS结构相变、电子结构和光学性质的研究. 必威体育下载 , 2013, 62(7): 077102.doi:10.7498/aps.62.077102
        [3] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成.强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 必威体育下载 , 2013, 62(22): 227501.doi:10.7498/aps.62.227501
        [4] 牛忠彩, 何智兵, 张颖, 韦建军, 廖国, 杜凯, 唐永建.射频功率对辉光聚合物薄膜结构与光学性质的影响. 必威体育下载 , 2012, 61(10): 106804.doi:10.7498/aps.61.106804
        [5] 罗庆洪, 陆永浩, 娄艳芝.Ti-B-C-N纳米复合薄膜结构及力学性能研究. 必威体育下载 , 2011, 60(8): 086802.doi:10.7498/aps.60.086802
        [6] 罗庆洪, 娄艳芝, 赵振业, 杨会生.退火对AlTiN多层薄膜结构及力学性能影响. 必威体育下载 , 2011, 60(6): 066201.doi:10.7498/aps.60.066201
        [7] 孙中华, 王红艳, 张志东, 张中月.金纳米环结构的光学性质研究. 必威体育下载 , 2011, 60(4): 047808.doi:10.7498/aps.60.047808
        [8] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 樊星, 龚伟.高分子有机场效应晶体管中半导体薄膜结晶行为及微观结构变化的研究. 必威体育下载 , 2011, 60(2): 027201.doi:10.7498/aps.60.027201
        [9] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄.真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响. 必威体育下载 , 2011, 60(3): 036107.doi:10.7498/aps.60.036107
        [10] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄.反应气压对直流磁控反应溅射制备的氧化银薄膜的结构和光学性质的影响. 必威体育下载 , 2011, 60(1): 016110.doi:10.7498/aps.60.016110
        [11] 丁万昱, 王华林, 苗壮, 张俊计, 柴卫平.沉积参数对SiNx薄膜结构及阻透性能的影响. 必威体育下载 , 2009, 58(1): 432-437.doi:10.7498/aps.58.432
        [12] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣.制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 必威体育下载 , 2009, 58(5): 3461-3467.doi:10.7498/aps.58.3461
        [13] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪.萤石结构TiO2的电子结构和光学性质. 必威体育下载 , 2008, 57(1): 482-487.doi:10.7498/aps.57.482
        [14] 范鲜红, 陈 波, 关庆丰.质子辐照对纯铝薄膜微观结构的影响. 必威体育下载 , 2008, 57(3): 1829-1833.doi:10.7498/aps.57.1829
        [15] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法.生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 必威体育下载 , 2006, 55(3): 1390-1397.doi:10.7498/aps.55.1390
        [16] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳.分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变. 必威体育下载 , 2006, 55(9): 4795-4802.doi:10.7498/aps.55.4795
        [17] 潘梦霄, 曹兴忠, 李养贤, 王宝义, 薛德胜, 马创新, 周春兰, 魏 龙.氧化钒薄膜微观结构的研究. 必威体育下载 , 2004, 53(6): 1956-1960.doi:10.7498/aps.53.1956
        [18] 丁瑞钦, 王浩, W.F.LAU, W.Y.CHEUNG, S.P.WONG, 王宁娟, 于英敏.InP/SiO2纳米复合膜的微观结构和光学性质. 必威体育下载 , 2001, 50(8): 1574-1579.doi:10.7498/aps.50.1574
        [19] 居建华, 夏义本, 张伟丽, 王林军, 史为民, 黄志明, 李志锋, 郑国珍, 汤定元.氮对类金刚石薄膜的微观结构内应力与附着力的影响. 必威体育下载 , 2000, 49(11): 2310-2314.doi:10.7498/aps.49.2310
        [20] 陶向明, 曾耀武, 冯春木, 焦正宽, 叶高翔.沉积在液体衬底上连续铝薄膜的微观结构. 必威体育下载 , 2000, 49(11): 2235-2239.doi:10.7498/aps.49.2235
      计量
      • 文章访问数:9055
      • PDF下载量:108
      • 被引次数:0
      出版历程
      • 收稿日期:2020-01-21
      • 修回日期:2020-03-05
      • 刊出日期:2020-06-05

        返回文章
        返回
          Baidu
          map