-
现实生活中, 与国计民生密切相关的基础设施网络大多不是独立存在的, 而是彼此之间相互联系或依赖的, 于是用于研究这些系统的多层网络模型随之产生. 多层网络中的节点在失效或者遭受攻击后会因“层内”和“层间”的相互作用而产生级联效应, 从而使得失效能够在网络层内和层间反复传播并使得失效规模逐步放大. 因此, 多层网络比单个网络更加脆弱. 多层网络级联失效产生的影响和损失往往是非常巨大的, 所以对多层网络级联失效的预防和恢复的研究具有重大意义. 就多层网络级联失效的预防而言, 主要包含故障检测, 保护重要节点, 改变网络耦合机制和节点备份等策略. 就多层网络发生级联失效后的恢复策略而言, 主要包含共同边界节点恢复、空闲连边恢复、加边恢复、重要节点优先恢复、更改拓扑结构、局域攻击修复、自适应边修复等策略.In real life, most of the infrastructure networks closely related to the national economy and people's livelihood do not exist independently, but are interconnected with or dependent on each other, so the multilayer network model is proposed to study the independent complex systems and infrastructures. When the nodes in the multilayer network suffer initial failure or attack, the cascade occurs due to the interaction between the “intra-layer” and “inter-layer”, and the failure can propagate in the network layer and across the layers iteratively, so that the scale of the failures is enlarged gradually. As a result, many multilayer networks are more fragile than single networks. The cascading failure of multilayer network usually brings very serious catastrophes to our society. So, conducting the research on preventing the multilayer network from cascading failure and recovering is of great significance. As far as the prevention of cascading failure is concerned, what are mainly included are the strategies such as the fault detection, the protection of important nodes, the optimization of the coupling method of networks, and the backup of nodes. As for the recovery of multi-layer network, included mainly are the strategies such as common boundary node recovery, the idle connected link recovery, the link addition, the priority recovery of important nodes, the topology perturbation, and the repairing of localized attack and adaptive link.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] -
地点 日期 受灾人数/百万 巴西 1999/3/11 97 印度 2001/1/2 230 美国, 加拿大 2003/8/14-15 55 意大利, 瑞士 2003/9/28 55 印度尼西亚 2005/8/18 100 巴西, 巴拉圭 2009/11/10-11 87 土耳其 2015/3/31 70 印度 2012/7/30-31 620 孟加拉 2014/11/1/ 150 肯尼亚 2016/6/7 44 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77]
计量
- 文章访问数:14849
- PDF下载量:537
- 被引次数:0