搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

刘畅, 刘祥瑞

Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators

Liu Chang, Liu Xiang-Rui
PDF
HTML
导出引用
  • 拓扑材料的发现标志着凝聚态物理学和材料科学的又一次革命. 从电学属性来说, 人们不再仅仅以导电性的强弱(能隙的有无)把材料划分为导体、半导体和绝缘体, 而是进一步通过系统的整体拓扑不变量把材料划分为拓扑平庸的和拓扑不平庸的. 拓扑绝缘体是最早发现的拓扑非平庸系统, 以负能隙的体材料和无能隙的拓扑边缘态为标志. 强三维拓扑绝缘体拥有连接导带和价带的狄拉克锥拓扑表面态, 而引入铁磁性会使拓扑表面态打开一个特殊的磁性能隙. 这些新颖的材料在自旋电子学、非线性光学等广泛的领域有潜在的应用价值, 更是将来的拓扑量子计算中不可或缺的核心材料. 作为应用最广泛的一种直接观察 k空间的实验手段和表面物理的重要分析工具, 角分辨光电子能谱 (ARPES) 在拓扑材料的研究中一直处于举足轻重的地位. 从拓扑绝缘体的最初发现到现在, 利用ARPES研究强三维拓扑绝缘体和磁性拓扑绝缘体的文章已数以千计, 不胜枚举. 本文试从材料分类的角度对这两类材料的部分ARPES研究作一综述, 侧重于描述利用ARPES研究此类材料的一般方法和过程, 力求使读者对这一领域的研究现状有一个基本的概念. 本文假定读者具有ARPES的基础知识, 因此对ARPES的基本原理和系统构成不作讨论.
    The discovery of topological materials – condensed matter systems that have nontrivial topological invariants – marked the commencement of a new era in condensed matter physics and materials science. Three dimensional topological insulators (3D TIs) are one of the first discovered and the most studied among all topological materials. The bulk material of the TIs have the characteristics of the insulator, having a complete energy gap. Their surface electronic states, on the other hand, have the characteristics of a conductor, with energy band passes continuously through the Fermi surface. The conductivity of this topological surface state (TSS) is protected by the time reversal symmetry of the bulk material. The TSS is highly spin-polarized and form a special spin-helical configuration that allows electrons with specific spin to migrate only in a specific direction on the surface. By this means, surface electrons in TIs can " bypass” the influence of local impurities, achieving a lossless transmission of spin-polarized current. The existence of TIs directly leads to a variety of novel transport, magnetic, electrical, and optical phenomena, such as non-local quantum transport, quantum spin Hall effect, etc., promising wide application prospects. Recently, several research groups have searched all 230 non-magnetic crystal space groups, exhausting all the found or undiscovered strong/weak TIs, topological crystalline insulators (TCI), and topological semimetals. This series of work marks that theoretical understanding of non-magnetic topological materials has gone through a period of one-by-one prediction and verification, and entered the stage of the large-area material screening and optimization. Parallel to non-magnetic TIs, magnetic topological materials constructed by ferromagnetic or antiferromagnetic long range orders in topological systems have always been an important direction attracting theoretical and experimental efforts. In magnetic TIs, the lack of time reversal symmetry brings about new physical phenomena. For example, when a ferromagnetic order is introduced into a three-dimensional TI, the Dirac TSS that originally intersected at one point will open a magnetic gap. When the Fermi surface is placed just in the gap, the quantum anomalous Hall effect can be implemented. At present, the research on magnetic topology systems is still in the ascendant. It is foreseeable that these systems will be the main focus and breakthrough point of topology material research in the next few years. Angle-resolved photoemission spectroscopy (ARPES) is one of the most successful experimental methods of solid state physics. Its unique k-space-resolved single-electron detection capability and simple and easy-to-read data format make it a popular choice for both theoretists and experimentalists. In the field of topological materials, ARPES has always been an important experimetnal technique. It is able to directly observe the bulk and surface band structure of crystalline materials, and in a very intuitive way. With ARPES, it is incontrovertible to conclude whether a material is topological, and which type of topological material it belongs to. This paper reviews the progress of ARPES research on TIs since 2008, focusing on the experimental energy band characteristics of each series of TIs and the general method of using ARPES to study this series of materials. Due to space limitations, this paper only discusses the research progress of ARPES for strong 3D TIs (focusing on the Bi 2Se 3series) and magnetic TIs (focusing on the MnBi 2Te 4series). Researches involving TCIs, topological Kondo insulators, weak 3D TIs, topological superconductors and heterostructures based on topological insulators will not be discussed. This paper assumes that the reader has the basic knowledge of ARPES, so the basic principles and system components of ARPES are not discussed.
        通信作者:刘畅,liuc@sustech.edu.cn
      • 基金项目:国家自然科学基金(批准号: 11674149, 11504159)、广东省自然科学基金(批准号: 2016A030313650)、广东省“珠江人才计划”引进创新创业团队(批准号: 2016ZT06D348)、深圳市海外高层次人才孔雀团队(批准号: KQTD2016022619565991)、深圳市重点实验室(批准号: ZDSYS20170303165926217)和深圳市科技创新委员会(批准号: JCYJ20150630145302240, KYTDPT 20181011104202253)资助的课题
        Corresponding author:Liu Chang,liuc@sustech.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11674149, 11504159), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313650), the Foundation of Guangdong "Pearl River Talent Plan" to Introduce Innovation and Entrepreneurship Team, China (Grant No. 2016ZT06D348), the Shenzhen Overseas High-level Talents Peacock Team (Grant No. KQTD2016022619565991), the Project of Shenzhen Key Laboratory (Grant No. ZDSYS20170303165926217), and the Project of Shenzhen Science and Technology Innovation Committee (Grant Nos. JCYJ20150630145302240, KYTDPT20181011104202253)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

      [223]

      [224]

      [225]

      [226]

      [227]

      [228]

      [229]

      [230]

      [231]

      [232]

      [233]

      [234]

      [235]

      [236]

      [237]

      [238]

      [239]

      [240]

      [241]

      [242]

      [243]

      [244]

      [245]

      [246]

      [247]

      [248]

      [249]

      [250]

      [251]

      [252]

    • 文献序号 样品形态 测量温度/K 光子能量/eV 能隙大小/meV 备注
      [242] 单晶 17/300 28/9 70
      [243] 单晶 30/300 未提及 ~85/115
      [235] 单晶 18 21.5 100
      [244] (v1, v2) 单晶 18/40 7.25/9/11/13.75/15 50 在这篇arXiv文章的第三个版本(张贴于2019年7月9日)里, 作者加入了零能隙的数据.
      [245] 单晶 7/18/47/80 21.5/79 100
      [246] 薄膜 25 21.2 0 此文献观察到了零能隙, 但作者认为测量温度不够低, 测得的是无能隙的顺磁拓扑表面态.
      [247] 单晶 10/300 6.3/7-40 0 张贴于2019年7月8日
      [248] 单晶 7.5 7/10-22 0 张贴于2019年7月11日
      [249] 单晶 10/50 13.8/47/51 0 张贴于2019年7月15日
      [250] 单晶 8/60 6.36/6.7 0 张贴于2019年7月22日
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

      [223]

      [224]

      [225]

      [226]

      [227]

      [228]

      [229]

      [230]

      [231]

      [232]

      [233]

      [234]

      [235]

      [236]

      [237]

      [238]

      [239]

      [240]

      [241]

      [242]

      [243]

      [244]

      [245]

      [246]

      [247]

      [248]

      [249]

      [250]

      [251]

      [252]

    • [1] 刘畅, 王亚愚.磁性拓扑绝缘体中的量子输运现象. 必威体育下载 , 2023, 72(17): 177301.doi:10.7498/aps.72.20230690
      [2] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰.1T-NbSeTe电子结构的角分辨光电子能谱. 必威体育下载 , 2022, 71(12): 127901.doi:10.7498/aps.71.20220458
      [3] 赵林, 刘国东, 周兴江.高温超导体电子结构和超导机理的角分辨光电子能谱研究. 必威体育下载 , 2021, 70(1): 017406.doi:10.7498/aps.70.20201913
      [4] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录.Li(Na)AuS体系拓扑绝缘体材料的能带结构. 必威体育下载 , 2021, 70(2): 027101.doi:10.7498/aps.70.20200885
      [5] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青.反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 必威体育下载 , 2021, 70(18): 186801.doi:10.7498/aps.70.20210783
      [6] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜.高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 必威体育下载 , 2020, 69(20): 200704.doi:10.7498/aps.69.20200680
      [7] 向天, 程亮, 齐静波.拓扑绝缘体中的超快电荷自旋动力学. 必威体育下载 , 2019, 68(22): 227202.doi:10.7498/aps.68.20191433
      [8] 贾鼎, 葛勇, 袁寿其, 孙宏祥.基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 必威体育下载 , 2019, 68(22): 224301.doi:10.7498/aps.68.20190951
      [9] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林.拓扑半金属材料角分辨光电子能谱研究进展. 必威体育下载 , 2019, 68(22): 227102.doi:10.7498/aps.68.20191544
      [10] 高艺璇, 张礼智, 张余洋, 杜世萱.二维有机拓扑绝缘体的研究进展. 必威体育下载 , 2018, 67(23): 238101.doi:10.7498/aps.67.20181711
      [11] 赵林, 刘国东, 周兴江.铁基高温超导体电子结构的角分辨光电子能谱研究. 必威体育下载 , 2018, 67(20): 207413.doi:10.7498/aps.67.20181768
      [12] 李兆国, 张帅, 宋凤麒.拓扑绝缘体的普适电导涨落. 必威体育下载 , 2015, 64(9): 097202.doi:10.7498/aps.64.097202
      [13] 王青, 盛利.磁场中的拓扑绝缘体边缘态性质. 必威体育下载 , 2015, 64(9): 097302.doi:10.7498/aps.64.097302
      [14] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新.拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 必威体育下载 , 2014, 63(18): 187303.doi:10.7498/aps.63.187303
      [15] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇.拓扑绝缘体Bi2Te3的热膨胀系数研究. 必威体育下载 , 2014, 63(11): 117301.doi:10.7498/aps.63.117301
      [16] 曾伦武, 宋润霞.点电荷在拓扑绝缘体和导体中感应磁单极. 必威体育下载 , 2012, 61(11): 117302.doi:10.7498/aps.61.117302
      [17] 曾伦武, 张浩, 唐中良, 宋润霞.拓扑绝缘体椭球粒子的电磁散射. 必威体育下载 , 2012, 61(17): 177303.doi:10.7498/aps.61.177303
      [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元.半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 必威体育下载 , 2012, 61(12): 123101.doi:10.7498/aps.61.123101
      [19] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿.6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 必威体育下载 , 2009, 58(6): 4288-4294.doi:10.7498/aps.58.4288
      [20] 杨志红, 施大宁, 罗达峰.层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 必威体育下载 , 2004, 53(11): 3902-3908.doi:10.7498/aps.53.3902
    计量
    • 文章访问数:22879
    • PDF下载量:621
    • 被引次数:0
    出版历程
    • 收稿日期:2019-09-23
    • 修回日期:2019-11-13
    • 上网日期:2019-11-19
    • 刊出日期:2019-11-20

      返回文章
      返回
        Baidu
        map