搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

王聪, 刘杰, 张晗

Ultrafast pulse lasers based on two-dimensinal nanomaterials

Wang Cong, Liu Jie, Zhang Han
PDF
HTML
导出引用
  • 石墨烯以其独特的光电特性打开了二维纳米材料的大门, 随后拓扑绝缘体、过渡金属硫化物、黑磷等二维材料相继被报道, 这些材料由于具有良好的非线性光学特性, 可用作被动饱和吸收体来产生脉冲激光. 本文总结了近年来基于二维材料的光纤激光器和固体激光器的研究状况, 从激光器的中心波长、脉宽、重复频率、脉冲能量和输出功率等基本参数对发展现状进行了阐述, 最后进行了总结和展望.
    Ultrafast pulse laser has been widely used in many fields, such as optical communications, military and materials processing. Semiconductor saturable absorber mirror (SESAM) serving as a saturable absorber is an effective way to obtain ultrafast pulse laser with ps-level pulse width. The SESAM needs specially designing to meet different wavelength operations. And the low damage threshold and high fabrication cost of SESAM hinder its development. Exploring novel materials is becoming a hot topic to overcome these drawbacks and obtain ultrafast laser with excellent performance. The discovery of graphene opens the door for two-dimensional nanomaterials due to the unique photoelectric properties of layered materials. Subsequently, two-dimensional (2D) materials such as topological insulators, transition metal sulfides, and black phosphorus are reported. These materials are used as saturable absorber to obtain a pulsed laser. In this paper, we summarize the research status of fiber lasers and solid-state lasers based on 2D materials in recent years. The development status of the lasers in terms of central wavelength, pulse width, repetition frequency, pulse energy and output power are discussed. Finally, the summary and outlook are given. We believe that nonlinear optical devices based on 2D materials will be rapidly developed in the future several decades
        通信作者:刘杰,jieliu@sdnu.edu.cn; 张晗,hzhang@szu.edu.cn
        作者简介:
        刘杰, 山东师范大学物理与电子科学学院教授、博导. 主要从事固体激光器件与技术、非线性光学等方面的研究
        张晗, 深圳大学特聘教授、博士生导师. 主要从事超快光纤激光器、非线性光学、新型二维材料光电器件等方面的研究. 现已发表SCI论文百余篇, 引用次数超过19000次, 高引用论文46篇. 2018年获得教育部自然二等奖
      • 基金项目:国家自然科学基金(批准号: 61875138)、国家自然科学基金青年科学基金(批准号: 61705140)和中国博士后科学基金(批准号: 2018M643165)资助的课题.
        Corresponding author:Liu Jie,jieliu@sdnu.edu.cn; Zhang Han,hzhang@szu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 61875138), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705140), and the China Postdoctoral Science Foundation (Grant No. 2018M643165).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

    • Material type Fabrication method λ/nm Pulse width Repetition rate Energy Ref.
      G G CVD 1069.8 580 ps 0.9 MHz 0.41 nJ [26]
      CVD 1559.12 432.47 fs 25.51 MHz 0.09 nJ [27]
      CVD 1565.3 148 fs 101 MHz 15 pJ [28]
      CVD 1545 88 fs 21.15 MHz 71 pJ [29]
      CVD 1531.3 1.21 ps 1.88 MHz [30]
      CVD 1559.34 345 fs 54.28 MHz 38.7 pJ [31]
      CVD 1561 1.23 ps 2.54 MHz [32]
      CVD 1576 415 fs 6.84 MHz 7.3 nJ [33]
      LPE 1550 29 fs 18.67 MHz 2.8 nJ [20]
      ME 1567 220 fs 15.7 MHz 83 pJ [34]
      1554 168 fs 63 MHz 55 pJ [35]
      ME 1560 900 fs 2.22 GHz [22]
      1560 992 fs 0.49 GHz [36]
      LPE 1525—1559 1 ps 8 MHz 125 pJ [37]
      CVD 1945 205 fs 58.87 MHz 220 pJ [38]
      2060 190 fs 20.98 MHz 2.55 nJ [39]
      CVD 2780 42 ps 25.4 MHz 0.7 nJ [40]
      GO 1556.5 615 fs 17.09 MHz [41]
      Graphene-Bi2Te3 CVD 1565.6 1.17 ps 6.91 MHz [42]
      TIs Bi2Se3 PM 1031.7 46 ps 44.6 MHz 0.76 nJ [43]
      PM 1600 360 fs 35.45 MHz 24.3 pJ [44]
      PM 1557.5 660 fs 12.5 MHz 0.14 nJ [45]
      LPE 1571 579 fs 12.54 MHz 127 pJ [46]
      LPE 1559 245 fs 202.7 MHz 37 nJ [47]
      HM 1610 0.7 ns 640.9 MHz 481 pJ [48]
      PM 1557—1565 1.57 ps 1.21 MHz [49]
      LPE 1567/1568 22 ps 8.83 MHz 1.1 nJ [50]
      Bi2Te3 ME 1057.82 230 ps 1.44 MHz 0.6 nJ [51]
      HM 1064.47 960 ps 1.11 MHz [52]
      ME 1547 600 fs 15.11 MHz 53 pJ [53]
      PLD 1560.8 286 fs 18.55 MHz 0.03 nJ [54]
      HM 1557 1100 fs 8.635 MHz 29 pJ [55]
      PLD 1562.4 320 fs 2.95 GHz [24]
      1557.4 3.42 ps 388 MHz [56]
      ME 1935 795 fs 27.9 MHz 36 pJ [57]
      1909.5 1.26 ps 21.5 MHz [58]
      Sb2Te3 LPE 1556 449 fs 22.13 MHz 39.6 pJ [59]
      ME 1564 125 fs 22.4 MHz 44.6 pJ [60]
      ME 1561 270 fs 34.58 MHz 0.03 nJ [61]
      DFT 1568.6 195 fs 33 MHz 0.27 nJ [62]
      ME 1565 128 fs 22.32 MHz 45 pJ [15]
      MS 1558 167 fs 25.38 MHz 0.21 nJ [63]
      PLD 1542 70 fs 95.4 MHz [23]
      TMDs WS2 MS 1560 288 fs 41.4 MHz 0.04 pJ [64]
      LPE 1550 595 fs [65]
      PLD 1560 220 fs [66]
      LPE 1561/1563 369/563 24.93/20.39 MHz 70/136 pJ [67]
      CVD 1565 332 fs 31.11 MHz 14 pJ [68]
      PLD 1559.7 452 fs 1.04 GHz 10.9 pJ
      PLD 1558.54 585—605 fs 8.83 MHz 1.14 nJ [66]
      LPE 1941 1.3 ps 34.8 MHz 172 pJ [69]
      MoS2 HM 1054.3 800 ps 7 MHz 1.3 nJ [70]
      HM 1569.5 710 fs 12.09 MHz 0.147 nJ [71]
      ME 1550 200 fs 14.53 MHz [72]
      PLD 1561 246 fs 101.4 MHz 1.2 nJ [73]
      LPE 1573.7 630 fs 27.1 MHz 0.141 nJ [74]
      HM 1556.8 3 ps 2.5 GHz 2 pJ [75]
      LPE 1530.4 1.2 ps 125 MHz 344 pJ [76]
      LPE 1555.6 737 fs 3.27 GHz 7 pJ [21]
      LPE 1535—1565 0.96—7.1 ps 12.99 MHz [77]
      MS 1915.5 1.25 ps 18.72 MHz [78]
      WSe2 CVD 1557.4 163.5 fs 63.13 MHz 451 pJ [79]
      CVD 1863.96 1.16 ps 11.36 MHz 2.9 nJ [80]
      MoSe2 LPE 1912 920 fs 18.21 MHz [81]
      SnS2 LPE 1062.66 656 ps 39.33 MHz 57 pJ [82]
      LPE 1562.01 623 fs 29.33 MHz 41 pJ [83]
      ReS2 CVD 1564 1.25 ps 3.43 MHz [84]
      LPE 1558.6 1.6 ps 5.48 MHz 73 pJ [85]
      BP ME 1085.5 7.54 ps 13.5 MHz 5.93 nJ [86]
      LPE 1030.6 400 ps 46.3 MHz 0.70 nJ [87]
      LPE 1555 102 fs 23.9 MHz 0.08 nJ [25]
      LPE 1562 1236 fs 5.426 MHz [88]
      LPE 1549—1575 280 fs 60.5 MHz [89]
      ME 1560.7 570 fs 6.88 MHz 0.74 nJ [16]
      LPE 1559.5 670 fs 8.77 MHz [90]
      ME 1558.7 786 fs 14.7 MHz 0.11 nJ [91]
      ME 1571.4 946 fs 5.96 MHz [14]
      ME 1560.5 272 fs 28.2 MHz 2.3 nJ [92]
      LPE 1532—1570 940 fs 4.96 MHz 1.1 nJ [93]
      LPE 1562.8 291 fs 10.36 MHz [94]
      LPE 1562 635 fs 12.5 MHz [95]
      LPE 1555 687 fs 37.8 MHz [96]
      LPE 1561.7 882 fs 5.47 MHz
      LPE 1533 20.82 MHz 0.07 nJ [97]
      ME 1910 739 fs 36.8 MHz 0.05 nJ [98]
      LPE 1898 1580 fs 19.2 MHz 440 pJ [99]
      LPE 2094 1300 fs 290 MHz 0.39 nJ [100]
      注: LPE, liquid-phase exfoliation; CVD, chemical vapor deposition; ME, mechanical exfoliation; MS, magnetron sputtering; PLD, pulsed laser deposition; HM, hydrothermal method; DFT, direct fusion technique; PM, polyol method; G, graphene; GO, graphene oxide.
      下载: 导出CSV

      Material type Fabrication methods λ Pulse width Repetation rate Energy Ref.
      G G 1075 nm 70 ns 257 kHz 46 nJ [107]
      1192.6 nm 800 ps 111 kHz 0.44 μJ [106]
      CVD 1560 nm 2.06 μs 73.06 kHz 93.7 nJ [108]
      HM 1561 nm 4.0 μs 27.2 kHz 29 nJ [109]
      LPE 1555 nm 2 μs 103 kHz 40 nJ [110]
      2.78 μm 2.9 μs 37.2 kHz 1.67 μJ [111]
      GO 1558 nm 2.3 μs 123.5 kHz 1.68 nJ [112]
      CVD 1044 nm 1.7 μs 215 kHz 8.37 μJ [113]
      2032 nm 3.8 μs 45 kHz 6.71 μJ [114]
      TIs Bi2Se3 LPE 604 nm 494 ns 187.4 kHz 3.1 nJ [115]
      LPE 635 nm 244 ns 454.5 kHz 22.3 nJ [116]
      LPE 1.06 μm 1.95 μs 29.1 kHz 17.9 nJ [117]
      HM 1562.27 nm 1.6 μs 53.7 kHz 0.08 nJ [118]
      PM 1.5 μm 13.4 μs 12.88 kHz 13.3 nJ [119]
      LPE 1.55 μm 2.54 μs 212 kHz [120]
      LPE 1530.3 nm 24 μs 40.1 kHz 39.8 nJ [121]
      LPE 1.98 μm 4.18 μs 26.8 kHz 313 nJ [122]
      Bi2Te3 ME 1559 nm 4.88 μs 21.24 kHz 89.9 nJ [123]
      SM 1557.5 nm 3.71 μs 49.40 kHz 2.8 μJ [124]
      LPE 1.5 μm 13 μs 12.82 kHz 1.5 μJ [125]
      ME 1.56 μm 2.81 μs 42.8 kHz 12.7 nJ [126]
      Sb2Te3 MS 1530—1570 nm 400 ns 338 kHz 18 nJ [127]
      SnS2 1532.7 nm 510 ns 233 kHz 40 nJ [128]
      TMDs MoS2 LPE 604 nm 602 ns 118.4 kHz 5.5 nJ [129]
      LPE 635 nm 200 ns 512 kHz 28.7 nJ [130]
      LPE 1030—1070 nm 2.88 μs 89 kHz 126 nJ [131]
      HM 1.56 μm 3.2 μs 91.7 kHz 17 nJ [132]
      TEM 1550—1575 nm 6 μs 22 kHz 150 nJ [133]
      CVD 1529—1570 nm 1.92 μs 114.8 kHz 8.2 nJ [134]
      LPE 1519—1567 nm 3.3 μs 43.47 kHz 160 nJ [135]
      PLD 1549.8 nm 660 ns 131 kHz 152 nJ [136]
      CVD 1549.9 nm 1.66 μs 173 kHz 27.2 nJ [137]
      LPE 1550 nm 9.92 μs 41.45 kHz 184 nJ [138]
      LPE 1.06 μm 5.8 μs 28.9 kHz 32.6 nJ [139]
      1.56 μm 5.4 μs 27 kHz 63.2 nJ
      2.03 μm 1.76 μs 48.1 kHz 1 μJ
      TMDs WS2 LPE 604 nm 435 ns 132.2 kHz 6.4 nJ [129]
      CVD 1027—1065 nm 1.65 μs 97 kHz [140]
      LPE 1030 nm 3.2 μs 36.7 kHz 13.6 nJ [141]
      LPE 1.5 μm 0.71 μs 134 kHz 19 nJ [142]
      LPE 1558 nm 1.1 μs 97 kHz 179 nJ [141]
      LPE 1547.5 nm 958 ns 120 kHz 44 nJ [143]
      LPE 1550 nm 3.966 μs 77.92 kHz 1.2 μJ [138]
      TDMs MoSe2 LPE 635.4 nm 240 ns 555 kHz 11.1 nJ [130]
      1060 nm 2.8 μs 60 kHz 116 nJ
      LPE 1566 nm 4.8 μs 35.4 kHz 825 nJ [144]
      1924 nm 5.5 μs 21.8 kHz 42 nJ
      LPE 1550 nm 4.04 μs 66.8 kHz 369 nJ [138]
      WSe2 LPE 1550 nm 4.06 μs 85.36 kHz 485 nJ [138]
      WSe2 LPE 1560 nm 3.1 μs 49.6 kHz 33.2 nJ [145]
      TiSe2 CVD 1530 nm 1.12 μs 154 kHz 75 nJ [146]
      BP LPE 635 nm 383 ns 409.8 kHz 27.6 nJ [147]
      ME 1064.7 nm 2.0 μs 76 kHz 17.8 nJ [148]
      ME 1.0 μm 1.16 μs 58.73 kHz 2.09 nJ [149]
      LPE 1.5 μm 1.36 μs 82.64 kHz 148 nJ [150]
      ME 1561 nm 2.96 μs 34.32 kHz 194 nJ [151]
      ME 1562.8 nm 10.32 μs 15.78 kHz 94.3 nJ [14]
      LPE 1912 nm 731 μs 113.3 kHz 632 nJ [152]
      注: SM, solvothermal method; TEM, thermal evaporation method.
      下载: 导出CSV

      Material Fabrication method Integration substrate Bulk laser crystal Center wavelength Pulse
      width
      Repetition
      rate
      Output
      power
      Ref.
      G CVD Quartz Ti:Sapphire 800 nm 63 fs 99.4 MHz 480 mW [154]
      LPE Quartz Yb:YAG 1064 nm 4 ps 88 MHz 100 mW [155]
      CVD GM Yb:YCOB 1.0 μm 152 fs [156]
      CVD Quartz Yb:SC2SiO5 1062.8 nm 14 ps 90.7 MHz 480 mW [157]
      VEM Quartz Nd:YVO4 1064 nm 8.8 ps 84 MHz 3.06 W [158]
      CVD Sapphire Yb:KGW 1032 nm 325 fs 66.3 MHz 1.78 W [159]
      LPE DM Nd:GdVO4 1064 nm 16 ps 43 MHz 360 mW [160]
      CVD Glass Yb:Y:CaF2 1051 nm 4.8 ps 60 MHz 370 mW [161]
      CVD Glass Yb:Y2SiO5 1042.6 nm 883 fs 87 MHz 1 W [162]
      LPE DM Yb:KGW 1031.1 nm 428 fs 86 MHz 504 mW [163]
      LPE DM Nd;GdVO4 1.34 μm 11 ps 100 MHz 1.29 W [164]
      CVD Quartz Cr:YAG 1516 nm 91 fs 100 mW [165]
      CVD GM Tm:CLNGG 2.0 μm 354 fs NA [156]
      CVD DM Tm:CLNGG 2014.4 nm 882 fs 95 MHz 60 mW [166]
      LPE Quartz Tm:YAP 2023 nm < 10 ps 71.8 MHz 268 mW [167]
      CVD HRM Cr:ZnS 2400 nm 41 fs 108 MHz 250 mW [168]
      CVD HRM Tm:CLNGG 2018 nm 729 fs 98.7 MHz 178 mW [169]
      CVD Quartz Tm:YAP 1988 nm 62.38 MHz 256 mW [170]
      GO VEM Quartz Nd:GdVO4 1064 nm 4.5 ps 70 MHz 1.1 W [171]
      VEM Quartz Yb:Y2SiO5 1059 nm 763 fs 94 MHz 700 mW [172]
      Bi2Te3 SCCA Sapphire Nd:YVO4 1064 nm 8 ps 0.98 GHz 180 mW [173]
      MoS2 PLD Quartz Pr:GdLiF4 522 nm 46 ps 101.4 MHz 10 mW [153]
      MoS2/G PLD HRM Yb:KYW 1037.2 nm 236 fs 41.84 MHz 550 mW [174]
      MoS2/GO LPE DM Nd:GdVO4 1064 nm 17 ps 1.02 GHz 508 mW [175]
      BP LPE DM Nd:GdVO4 1064 nm 6.1 ps 140 MHz 460 mW [176]
      LPE HRM Yb,Lu:CALGO 1053.4 nm 272 fs 63.3 MHz 820 mW [177]
      LPE Quartz Nd;GdVO4 1.34 μm 9.24 ps 58.14 MHz 350 mW [178]
      LPE Ho,Pr:ZBLAN 2.8 μm 8.6 ps 13.98 MHz 87.8 mW [179]
      注: VEM, vertical evaporation method; SCCA, spin coating–coreduction approach; DM, dielectric mirror; HRM, high reflective mirror.
      下载: 导出CSV

      Material Fabrication method Integration substrate Bulk laser
      crystal
      Center wavelength Pulse
      width
      Repitition rate Output power Ref.
      G Quartz Ho:YAG 2097 nm 2.6 μs 64 kHz 264 mW [180]
      Quartz Tm:LGGG 2003 nm 1.29μs 43.9 kHz 140 mW [181]
      EG SiC Cr:ZnSe 2.4 μm 157 ns 169 kHz 256 mW [182]
      CVD CaF2 Er:Y2O3 2.7 μm 296 ns 44.2 kHz 114 mW [183]
      HRM Er:ZBLAN 2.78 μm 2.9 μs 37 kHz 62 mW [111]
      CVD Quartz Er:CaF2 2.8 μm 1.3 μs 62.7 kHz 172 mW [184]
      CVD Sapphire Ho,Pr:LLF 2.95 μm 937 ns 55.7 kHz 172 mW [185]
      LPE HRM Ho:ZBLAN 3.0 μm 1.2 μs 92 kHz 102 mW [186]
      GO LPE Tm:Y:CaF2 1969 nm 1.32μs 20.2 kHz 400 mW [187]
      LPE Quartz Tm:YLF 1928 nm 1.0 μs 38 kHz 379 mW [188]
      TIs Bi2Te3 LPE Quartz Tm:LuAG 2023.6 nm 620 ns 118 kHz 2.03 W [189]
      HEM CaF2 Ho:ZBLAN 2.979 μm 1.4 μs 81.96 kHz 327 mW [190]
      Bi2Te3/G SM SiO2 Tm:YAP 1980 nm 238 ns 108 kHz 2.34 W [191]
      Er:YSGG 2796 nm 243 ns 88 kHz 110 mW
      TMDs MoS2 PLD Quartz Tm:Ho:YGG 2.1 μm 410 ns 149 kHz 206 mW [192]
      PLD GM Tm:CLNGG 1979 nm 4.8 μs 110 kHz 62 mW [193]
      LPE DM Tm:CYAO 1850 nm 0.5 μs 84.9 kHz 490 mW [194]
      LPE Glass Tm,Ho:YAP 2129 nm 435 ns 55 kHz 275 mW [195]
      LPE YAG Er:Lu2O3 2.84 μm 335 ns 121 kHz 1.03 W [196]
      CVD YAG Ho,Pr:LLF 2.95 μm 621 ns 85.8 kHz 70 mW [197]
      Tm:GdVO4 1902 nm 0.8 μs 49.1 kHz 100 mW [198]
      MoS2/BP LPE SAMs Tm:YAP 1993 nm 488 ns 86 kHz 3.6 W [199]
      ReS2 LPE Sapphire Er:YSGG 2.8 μm 324 ns 126 kHz 104 mW [200]
      LPE YAG Er:SrF2 2.79 μm 508 ns 49 kHz 580 mW [201]
      WS2 TD SiO2 Tm:LuAG 2.0 μm 660 ns 62 kHz 1.08 W [202]
      SGM HRM Ho3+/Pr3+:ZBLAN 2.86 μm 1.73 us 131 kHz 48 mW [203]
      LPE YAG Ho,Pr,LLF 2.95 μm 654 ns 90.4 kHz 82 mW [204]
      BP ME Quartz Tm:Ho:YAG 2.1 μm 636 ns 122 kHz 27 mW [205]
      LPE Quartz Tm:YAP 1988 nm 1.8 us 19.3 kHz 151 mW [206]
      LPE DM Tm:YAP 1969 nm 181 ns 81 kHz 3.1 W [207]
      ME HRM Tm:YAG 2 μm 3.12 us 11.6 kHz 38 mW [208]
      LPE Ho:ZBLAN 2.9 μm 2.4 μs 62.5 kHz 309 mW [179]
      LPE DM Cr:ZnSe 2.4 μm 189 ns 176 kHz 36 mW [209]
      LPE Er:CaF2 2.8 μm 955 ns 41.9 kHz 178 mW [210]
      LPE GM Tm:CaYAlO4 1.93 μm 3.1 μs 17.7 kHz 12 mW [211]
      LPE GM Er:Y2O3 2.72 μm 4.5 μs 12.6 kHz 6 mW [211]
      LPE Silicon Er:SrF2 2.79 μm 702 ns 77 kHz 180 mW [212]
      LPE —  Er:ZBLAN 2.8 μm 1.2 μs 63 kHz 485 mW [213]
      LPE Silicon Er:CaF2 2.8 μm 955 ns 41.9 kHz 178 mW [210]
      LPE CaF2 Ho,Pr:LLF 2.95 μm 194 ns 159 kHz 385 mW [214]
      注: SGM, sulfidation grown method; GM, gold mirror.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

    • [1] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星.热效应作用下高功率薄片涡旋激光器的模场结构. 必威体育下载 , 2024, 73(16): 164206.doi:10.7498/aps.73.20240757
      [2] 罗实, 魏大鹏, 魏大程.二维材料在生物传感器中的应用. 必威体育下载 , 2021, 70(6): 064701.doi:10.7498/aps.70.20201613
      [3] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明.光栅局域调控二维光电探测器. 必威体育下载 , 2021, 70(2): 027801.doi:10.7498/aps.70.20201325
      [4] 张倩, 金鑫鑫, 张梦, 郑铮.基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 必威体育下载 , 2020, 69(18): 188101.doi:10.7498/aps.69.20200472
      [5] 龙慧, 胡建伟, 吴福根, 董华锋.基于二维材料异质结可饱和吸收体的超快激光器. 必威体育下载 , 2020, 69(18): 188102.doi:10.7498/aps.69.20201235
      [6] 连天虹, 王石语, 寇科, 刘芸.离轴抽运厄米-高斯模固体激光器. 必威体育下载 , 2020, 69(11): 114202.doi:10.7498/aps.69.20200086
      [7] 魏钟鸣, 夏建白.低维半导体偏振光探测器研究进展. 必威体育下载 , 2019, 68(16): 163201.doi:10.7498/aps.68.20191002
      [8] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣.1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 必威体育下载 , 2019, 68(12): 124201.doi:10.7498/aps.68.20182304
      [9] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光.基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 必威体育下载 , 2012, 61(1): 014216.doi:10.7498/aps.61.014216
      [10] 何广源, 郭靖, 焦中兴, 王彪.固体激光器热透镜效应的调控. 必威体育下载 , 2012, 61(9): 094217.doi:10.7498/aps.61.094217
      [11] 任广军, 张 强, 王 鹏, 姚建铨.掺钕保偏光纤激光器的研究. 必威体育下载 , 2007, 56(7): 3917-3923.doi:10.7498/aps.56.3917
      [12] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生.LD抽运被动调Q固体激光器的脉冲稳定性. 必威体育下载 , 2007, 56(10): 5818-5820.doi:10.7498/aps.56.5818
      [13] 李 磊, 赵长明, 张 鹏, 杨苏辉.激光二极管抽运频差可调谐双频固体激光器的研究. 必威体育下载 , 2007, 56(5): 2663-2669.doi:10.7498/aps.56.2663
      [14] 武丁二, 周 睿, 张晓华, 丁 欣, 姚建铨, 颜彩繁, 张光寅.LD端抽运平直腔Nd:YVO4固态激光器的输出功率特性研究. 必威体育下载 , 2006, 55(3): 1196-1200.doi:10.7498/aps.55.1196
      [15] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦.高平均功率调Q准连续Nd:YAG激光器. 必威体育下载 , 2006, 55(3): 1171-1175.doi:10.7498/aps.55.1171
      [16] 柳 强, 巩马理, 潘圆圆, 李 晨.边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展. 必威体育下载 , 2004, 53(7): 2159-2164.doi:10.7498/aps.53.2159
      [17] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵.端面抽运固体激光器热透镜效应的实验研究. 必威体育下载 , 2004, 53(6): 1804-1809.doi:10.7498/aps.53.1804
      [18] 尚连聚.端面抽运固体激光器的腔模匹配分析. 必威体育下载 , 2003, 52(6): 1408-1411.doi:10.7498/aps.52.1408
      [19] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德.激光二极管抽运固体激光器场分布的热不稳定性研究. 必威体育下载 , 2003, 52(2): 355-361.doi:10.7498/aps.52.355
      [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹.利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 必威体育下载 , 2002, 51(7): 1517-1520.doi:10.7498/aps.51.1517
    计量
    • 文章访问数:20950
    • PDF下载量:430
    • 被引次数:0
    出版历程
    • 收稿日期:2019-05-17
    • 修回日期:2019-06-21
    • 上网日期:2019-09-01
    • 刊出日期:2019-09-20

      返回文章
      返回
        Baidu
        map