搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安

    Measurement and compensation of frequency-dependent attenuation in ultrasonic backscatter signal from cancellous bone

    Dong Rui, Liu Cheng-Cheng, Cai Xun-Bin, Shao Liu-Lei, Li Bo-Yi, Ta De-An
    PDF
    HTML
    导出引用
    • 超声背散射法已逐渐应用于骨质的评价与诊断. 相比于人体软组织, 致密多孔的骨组织中超声衰减大, 导致接收到的超声信号微弱, 频散失真严重. 骨组织的超声频散衰减通常由超声透射法测量. 然而, 透射法测量的超声衰减为传播路径上组织介质衰减的平均值, 无法区分软组织、皮质骨及松质骨的衰减效应, 无法测量感兴趣区域内松质骨组织的超声衰减. 本文旨在研究松质骨超声频散衰减的背散射测量方法, 分析补偿超声背散射信号频散失真的可行性. 离体测量16块松质骨样本的超声背散射与透射信号(中心频率1 MHz). 采用四种背散射方法(谱移法、谱差法、谱对数差法和混合法)测量松质骨超声频散衰减系数, 与超声透射法测量的频散衰减标准值进行对比. 结果表明, 骨样本超声频散衰减范围为2.3—6.2 dB/mm/MHz, 透射法测量的超声频散衰减(均值 ± 方差)为(4.14 ± 1.14) dB/mm/MHz; 谱移法、谱差法、谱对数差法和混合法测量的频散衰减(均值 ± 方差)分别为(3.88 ± 1.15) dB/mm/MHz, (4.00 ± 0.98) dB/mm/MHz, (3.77 ± 0.84) dB/mm/MHz, (4.05 ± 0.85) dB/mm/MHz. 背散射法测量的频散衰减系数与标准值有较高的相关性( R= 0.78—0.92, p< 0.01), 其中, 谱差法( R= 0.91, p< 0.01)和混合法( R= 0.92, p< 0.01)测量结果更准确(相对误差小于20%). 以上结果说明背散射法测量松质骨超声频散衰减具有可行性, 基于傅里叶变换-逆变换原理可以补偿背散射信号频散衰减失真, 显著提高信号强度, 有利于后续超声背散射骨质评价及成像研究.
      Ultrasonic backscatter has been gradually applied to the assessment and diagnosis of bone disease. The heavy frequency-dependent attenuation of ultrasound results in weak ultrasonic signals with poor signal-to-noise ratio and serious wave distortions during propagation in cancellous bone. Ultrasonic attenuation measured with the through-transmission method is an averaged result of ultrasonically interrogated tissues (including the soft tissue, cortical bone and cancellous bone). Therefore, the through-transmission measurements can not accurately provide ultrasonic attenuation of cancellous bone of interest. The purpose of this study is to estimate ultrasonic frequency-dependent attenuation with ultrasonic backscatter measurements and to compensate for the frequency-dependent attenuation in an ultrasonic backscatter signal from cancellous bone. In-vitroultrasonic backscatter and through-transmission measurements are performed on 16 cancellous bone specimens by using 1.0-MHz transducers. Spatial scans are performed in a 10 mm × 10 mm scanned region with a spatial interval of 0.5 mm for each bone specimen. The frequency slope of ultrasonic attenuation is measured with the ultrasonic through-transmission signals serving as a standard value. Four different algorithms (the spectral shift method, the spectral difference method, the spectral log difference method, and the hybrid method) are used to estimate the frequency slope of ultrasonic attenuation coefficient from ultrasonic backscatter signal. The results show that the frequency-dependent attenuation coefficient ranges from 2.3 dB/mm/MHz to 6.2 dB/mm/MHz for the bovine bone specimens. The through-transmission measured frequency slope of ultrasonic attenuation coefficient is (4.14 ± 1.14) dB/mm/MHz (mean ± standard deviation), and frequency slopes of ultrasonic attenuation coefficient are estimated by four backscattering methods to be (3.88 ± 1.15) dB/mm/MHz, (4.00 ± 0.98) dB/mm/MHz, (3.77 ± 0.84) dB/mm/MHz, and (4.05 ± 0.85) dB/mm/MHz, respectively. The estimated frequency-dependent attenuation is significantly correlated with the standard attenuation value ( R= 0.78-0.92, p< 0.01), in which the spectral difference method ( R= 0.91, p< 0.01) and the hybrid method ( R= 0.92, p< 0.01) are more accurate with an estimated error less than 20%. The results prove that it is feasible to measure the frequency-dependent attenuation from ultrasonic backscatter signal of cancellous bone. Based on Fourier transform-inverse Fourier transform, the frequency-dependent attenuation can be compensated.The compensated ultrasonic signals are with significantly improved signal intensity and improved signal-to-noise ratio. This study is conducive to the subsequent ultrasonic backscatter measurement and ultrasonic imaging of cancellous bone.
          通信作者:刘成成,chengchengliu@tongji.edu.cn; 他得安,tda@fudan.edu.cn
        • 基金项目:国家自然科学基金(批准号: 11874289, 11827808, 11804056, 11525416)和中央高校基本科研业务费(批准号: 02302150002)资助的课题.
          Corresponding author:Liu Cheng-Cheng,chengchengliu@tongji.edu.cn; Ta De-An,tda@fudan.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11874289, 11827808, 11804056, 11525416) and the Fundamental Research Funds for the Central Universities, China (Grant No. 02302150002).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

      • 样本编号 透射标准值/dB·mm–1·MHz–1 背散射法测量值(相对误差)/dB·mm–1·MHz–1(%)
        谱移法 谱差法 谱对数差法 混合法
        1 2.30 2.74 (19.1) 2.82 (22.4) 2.77 (20.3) 2.67 (16.2)
        2 2.63 2.49 (–5.3) 2.85(8.3) 3.13 (19.3) 2.97 (13.1)
        3 2.82 2.39 (–15.3) 2.97 (5.2) 2.78 (–1.4) 3.29 (16.6)
        4 3.06 3.04 (–0.6) 2.77 (–9.4) 3.02 (–1.4) 3.02 (–1.3)
        5 3.10 2.95 (–4.6) 2.84 (–8.3) 3.39 (9.5) 3.12 (0.8)
        6 3.30 2.96 (–10.3) 3.38 (2.3) 2.99 (-9.4) 3.35 (1.7)
        7 4.14 2.93 (–29.2) 3.94 (–4.9) 4.21 (1.5) 4.32 (4.3)
        8 4.30 3.06 (–28.9) 4.75 (10.5) 3.58 (–16.7) 3.61 (–16.0)
        9 4.37 4.80 (9.8) 3.89 (–11.0) 3.66 (–16.2) 4.75 (8.7)
        10 4.37 5.10 (–16.9) 4.19 (–4.2) 3.36 (–23.1) 4.25 (–2.7)
        11 4.52 3.89 (–13.9) 4.35 (–3.7) 3.87 (–14.3) 4.79 (6.0)
        12 4.83 5.35 (10.9) 4.19 (–13.2) 4.53 (–6.1) 4.69 (–2.7)
        13 5.29 4.42 (–16.5) 5.68 (7.3) 6.08 (14.9) 5.18 (–2.0)
        14 5.50 5.18 (–5.8) 4.38 (–20.0) 4.19 (–23.8) 5.00 (–9.0)
        15 5.64 4.73 (–16.2) 5.75 (1.9) 3.96 (–29.9) 5.08 (–9.9)
        16 6.19 6.02 (–2.8) 5.25 (–15.3) 4.79 (–22.6) 4.76 (–23.1)
        平均值 (标准差) 4.14 (1.14) 3.88 (1.15) 4.00 (0.98) 3.77 (0.84) 4.05 (0.85)
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

      • [1] 刘雨, 田强, 王新艳, 关雪飞.基于单向测量超声背散射系数的晶粒尺寸评价高效方法. 必威体育下载 , 2024, 73(7): 074301.doi:10.7498/aps.73.20231959
        [2] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕.基于卷积神经网络的白蚀缺陷超声探测. 必威体育下载 , 2022, 71(24): 244301.doi:10.7498/aps.71.20221504
        [3] 王玉龙, 张晓虹, 李丽丽, 高俊国, 郭宁, 程成.基于超声波声压衰减效应的局部放电源定位与强度标定. 必威体育下载 , 2021, 70(9): 095209.doi:10.7498/aps.70.20201727
        [4] 陈海霞, 林书玉.超声在液体中的非线性传播及反常衰减. 必威体育下载 , 2020, 69(13): 134301.doi:10.7498/aps.69.20200425
        [5] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬.基于拟合衰减差自补偿的分布式光纤温度传感器. 必威体育下载 , 2020, 69(3): 030701.doi:10.7498/aps.69.20191456
        [6] 王大为, 王召巴, 陈友兴, 李海洋, 王浩坤.基于双高斯衰减模型的超声回波处理方法. 必威体育下载 , 2019, 68(8): 084303.doi:10.7498/aps.68.20182080
        [7] 倪龙, 陈晓.基于频散补偿和分数阶微分的多模式兰姆波分离. 必威体育下载 , 2018, 67(20): 204301.doi:10.7498/aps.67.20180561
        [8] 杨瑞科, 李茜茜, 姚荣辉.沙尘大气电磁波多重散射及衰减. 必威体育下载 , 2016, 65(9): 094205.doi:10.7498/aps.65.094205
        [9] 宋永锋, 李雄兵, 史亦韦, 倪培君.表面粗糙度对固体内部超声背散射的影响. 必威体育下载 , 2016, 65(21): 214301.doi:10.7498/aps.65.214301
        [10] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟.水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 必威体育下载 , 2011, 60(5): 054207.doi:10.7498/aps.60.054207
        [11] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾.受激布里渊散射对激光在水中衰减特性的影响. 必威体育下载 , 2008, 57(1): 260-264.doi:10.7498/aps.57.260
        [12] 赵 辉, 黄 健, 蓝 海, 董宝中.大鼠骨质疏松模型的小角x射线散射研究. 必威体育下载 , 2004, 53(6): 2005-2008.doi:10.7498/aps.53.2005
        [13] 杜启振, 杨慧珠.线性黏弹性各向异性介质速度频散和衰减特征研究. 必威体育下载 , 2002, 51(9): 2101-2108.doi:10.7498/aps.51.2101
        [14] 王 静, 方前锋, 朱震刚.循环应变波形对铝疲劳过程中超声衰减的影响. 必威体育下载 , 1998, 47(4): 559-563.doi:10.7498/aps.47.559
        [15] 朱为勇, 王耀俊, 宁伟.纤维复合媒质中的超声衰减. 必威体育下载 , 1996, 45(1): 58-64.doi:10.7498/aps.45.58
        [16] 王雅谷, 王业宁.钼酸钆晶体铁弹相变的超声衰减和内耗. 必威体育下载 , 1985, 34(4): 520-527.doi:10.7498/aps.34.520
        [17] 潘正良, 王双全, 李广义.钢在疲劳过程中的超声衰减. 必威体育下载 , 1985, 34(1): 134-139.doi:10.7498/aps.34.134
        [18] 杨瑞青, 熊诗杰, 蔡建华.金属超晶格中的声衰减. 必威体育下载 , 1984, 33(7): 1058-1061.doi:10.7498/aps.33.1058
        [19] 赵玉芝, 冷忠昂.反铁磁体中电磁振荡的频散和衰减. 必威体育下载 , 1962, 18(3): 167-174.doi:10.7498/aps.18.167
        [20] 魏荣爵.低频声音在水雾中衰减的测量. 必威体育下载 , 1954, 10(3): 187-208.doi:10.7498/aps.10.187
      计量
      • 文章访问数:9111
      • PDF下载量:101
      • 被引次数:0
      出版历程
      • 收稿日期:2019-04-23
      • 修回日期:2019-06-20
      • 上网日期:2019-09-01
      • 刊出日期:2019-09-20

        返回文章
        返回
          Baidu
          map