-
表面等离激元是金属与介质表面自由电子的集体振荡, 能够突破衍射极限, 将光束缚在纳米结构表面附近极小的空间内, 为纳米尺度的光操控提供可能. 利用表面等离激元共振, 不仅可以增强局域表面电磁场强度, 实现对表面附近分子荧光和拉曼信号的极大增强, 而且等离激元弛豫诱导的热电子还可以调控表面分子的化学反应, 提高反应速率和选择性, 即等离激元调控(催化)化学反应. 作为一种新型催化体系, 等离激元催化已经实现了多种传统光催化中难以发生的化学反应, 是表面等离激元领域的前沿热点问题. 由于等离激元催化反应的复杂性与多样性, 其反应动力学过程的完全表征和反应机理的揭示仍然是一个巨大的挑战. 精确表征催化反应的中间及最终产物, 获取反应动力学过程中更多的细节信息, 对于探索等离激元催化机理, 以及设计更为合理高效的催化体系极为重要. 本文围绕等离激元催化的最新研究进展, 总结并探讨等离激元催化中所使用的各种表征技术. 首先, 简单介绍了等离激元催化的基本概念和催化机理. 其次, 综述了拉曼光谱(包括表面/针尖增强拉曼光谱), 在等离激元催化原位监测中的应用, 并进一步详细介绍了气相色谱法、气相色谱-质谱联用、高效液相色谱法、扫描透射电子显微镜、扫描隧道显微镜、扫描电化学显微镜、紫外可见吸收光谱等技术在等离激元催化反应研究中的重要作用. 最后, 探讨了这些表征技术在等离激元催化动力学过程研究和催化机理探索中的特点与优势, 并展望了等离激元催化及相关表征技术的发展与挑战.Surface plasmons are collective oscillations of free electrons at the interface between metal and dielectric. Surface plasmons can break through the diffraction limit of light, because the electromagnetic field is confined in a very small space near the surface of the nanostructure, which provides a possibility for nanometer-scale light manipulation. By using surface plasmon resonance, the local surface electromagnetic field can be strongly enhanced, which can be used to enhance the molecular fluorescence and Raman signals. In addition, the plasmon relaxation induces thermal electrons which can drive the catalytic reaction of surface molecules to achieve a selective catalytic reaction at normal temperature, which is so-called plasmon mediated chemical reaction (or plasmonic catalysis). As a new type of catalytic system, plasmonic catalysis can mediate chemical reactions that are difficult to occur under various conventional conditions. Due to the complexity and diversity of plasmon catalyzed reactions, it is still a huge challenge to fully characterize the reaction kinetics and understand its reaction mechanism. Characterizing the intermediate and final products in the catalytic reaction accurately and obtaining more detailed information in the reaction process are essential for exploring the theoretical mechanism of plasmon catalysis. In this paper, we review the characterization techniques used in plasmon catalysis in detail in the progress of plasmon catalysis. First, the basic concepts of plasmon catalysis and several common catalytic mechanisms are introduced. Second, the Raman spectroscopy, including the application of surface and tip-enhanced Raman spectroscopy in plasmon catalytic in situ monitoring are reviewed. Then, the other techniques such as gas chromatography, gas chromatography-mass spectrometry, high performance liquid chromatography, scanning transmission electron microscopy, scanning tunneling microscopy, scanning electrochemical microscopy and UV-visible absorption spectroscopy for monitoring plasmon catalyzed reaction are introduced in detail. Finally, the characteristics and advantages of these characterization techniques in the study of kinetic catalytic process and catalytic mechanism of plasmon, and the future development and challenge are mentioned and analyzed.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64]
计量
- 文章访问数:14399
- PDF下载量:442
- 被引次数:0