搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国

    Theoretical calculations of stabilities and properties of transition metal borocarbidesTM3B3C andTM4B3C2compound

    Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo
    PDF
    HTML
    导出引用
    • 在过渡金属轻元素化合物中, 寻找新的硬质或者超硬材料是当前的一个研究热点. 目前寻找范围多集中在过渡金属硼化物、碳化物和氮化物等二元体系, 三元相的研究则相对较少. 本文以已知Nb 3B 3C和Nb 4B 3C 2结构为模板, 采用元素替代法构建了29种 TM 3B 3C ( TM为过渡金属元素)结构和29种 TM 4B 3C 2结构, 采用基于密度泛函理论的第一性原理计算方法, 成功找到了热力学、动力学以及力学都稳定的Ta 3B 3C和Ta 4B 3C 2两种新相. 结构搜索计算确认了这两相为全局能量最优结构. 能带结构和态密度的计算显示这两相均为导体, 导电性主要源于Ta原子的d电子. 这两种新相的硬度大约为26 GPa, 说明Ta 3B 3C和Ta 4B 3C 2属于高硬度材料, 但不是超硬材料.
      To search new hard or superhard materials in transition-metal light-element compounds is a current research focus. Most of the past researches focused on binary phases such as transition metal borides, carbides and nitrides, while the researches on ternary phases were relatively rare. The single crystals Nb 3B 3C and Nb 4B 3C 2were synthesized recently by using Al-Cu alloys as auxiliary metals and their structures were determined by Hillebrechtand Gebhardt. In the present paper, 29 TM 3B 3C and 29 TM 4B 3C 2configurations are constructed by TMatoms ( TM= Sc to Zn, Y to Cd, Hf to Hg) replacing Nb atoms in the known Nb 3B 3C and Nb 4B 3C 2configuration. By calculating the formation energy from first-principles density functional theories, only 13 TM 3B 3C and 11 TM 4B 3C 2phases are stable compared with the three elemental substances of TM, boron and carbon. However compared with the most competing phases, only Ta 3B 3C, Nb 3B 3C and Nb 4B 3C 2phases are stable thermodynamically. The metastable Ta 4B 3C 2phase at 0 K becomes stable when temperature is higher than 250 K. Thus two new phases of Ta 3B 3C and Ta 4B 3C 2are uncovered to be stable thermodynamically. Global structure searches conducted by the popular USPEX and CALYPSO softwares prove the Ta 3B 3C and Ta 4B 3C 2phases to be the most favorable energetically. By calculating the phonon dispersion curves of the Ta 3B 3C and Ta 4B 3C 2phase, no imaginary phonon frequencies are observed in the whole Brillouin zone, which demonstrates the dynamical stability of the Ta 3B 3C and Ta 4B 3C 2phase. The calculated elastic constant of the Ta 3B 3C and Ta 4B 3C 2phases satisfy the criteria of mechanical stability, showing that the Ta 3B 3C and Ta 4B 3C 2phase are stable mechanically. The calculations of band structure and density of state show that the Ta 3B 3C and Ta 4B 3C 2phases are both conducting, which mainly arises from the d electrons of Ta atoms. The calculated bulk modulus and shear modulus of the Ta 3B 3C and Ta 4B 3C 2phases show their brittle nature. The hardness of Ta 3B 3C and Ta 4B 3C 2phase are nearly the same and calculated to be about 26 GPa by Chen’s and Tian’s models, which illuminates that the two phases are hard but not superhard.
          通信作者:胡前库,hqk@hpu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 51472075, 51772077)、河南省高校科技创新团队(批准号: 19IRTSTHN027)和河南省自然科学基金(批准号: 182300410228, 182300410275)资助的课题.
          Corresponding author:Hu Qian-Ku,hqk@hpu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 51472075, 51772077), the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, China (Grant No. 19IRTSTHN027), and the Natural Science Foundation of Henan Province, China (Grant Nos. 182300410228, 182300410275).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

      • 模型 晶系和空间群 晶格参数(Å, degree) 原子坐标
        Nb3B3C OrthorhombicCmcm a= 3.284, 3.265a,b= 28.877, 28.710a,c= 3.144, 3.129a,α=β=γ= 90 Nb1 (4c) (0, 0.2128, 0.25), Nb2 (4c) (0, 0.3620, 0.25), Nb3 (4c) (0, 0.4532, 0.25), B1 (4c) (0, 0.1120, 0.25), B2 (4c) (0, 0.0155, 0.25), B3 (4c) (0, 0.0790, 0.25), C (4c) (0, 0.2878, 0.25)
        Nb4B3C2 OrthorhombicCmcm a= 3.257, 3.229a,b= 37.874, 37.544a,c= 3.153, 3.133a,α=β=γ= 90 Nb1 (4c) (0, 0.1621, 0.75), Nb2 (4c) (0, 0.2805, 0.75), Nb3 (4c) (0, 0.3946, 0.75), Nb4 (4c) (0, 0.4642, 0.25), B1 (4c) (0, 0.0854, 0.75), B2 (4c) (0, 0.0118, 0.25), B3 (4c) (0, 0.0602, 0.25), C1 (4c) (0, 0.2202, 0.75), C2 (4c) (0, 0.3383, 0.75)
        Ta3B3C OrthorhombicCmcm a= 3.267,b= 28.688,c= 3.133,α=β=γ= 90 Ta1 (4c) (0, 0.2121, 0.25), Ta2 (4c) (0, 0.3619, 0.25), Ta3 (4c) (0, 0.4531, 0.25), B1 (4c) (0, 0.1130, 0.25), B2 (4c) (0, 0.0155, 0.25), B3 (4c) (0, 0.0791, 0.25), C (4c) (0, 0.2874, 0.25)
        Ta4B3C2 OrthorhombicCmcm a= 3.243,b= 37.609,c= 3.141,α=β=γ= 90 Ta1 (4c) (0, 0.1615, 0.75), Nb2 (4c) (0, 0.2806, 0.75), Nb3 (4c) (0, 0.3945, 0.75), Nb4 (4c) (0, 0.4641, 0.25), B1 (4c) (0, 0.0861, 0.75), B2 (4c) (0, 0.0118, 0.25), B3 (4c) (0, 0.0602, 0.25), C1 (4c) (0, 0.2202, 0.75), C2 (4c) (0, 0.3380, 0.75)
        注:a文献[17]中的实验值.
        下载: 导出CSV

        TM TM3B3C TM4B3C2
        $\Delta {H_{{\rm{elements}}}}$ $\Delta {H_{{\rm{comp}}}}$ 最稳定竞争组合 $\Delta {H_{{\rm{elements}}}}$ $\Delta {H_{{\rm{comp}}}}$ 最稳定竞争组合
        Sc –0.637 0.071 6ScB2+ Sc4C3+ Sc2C = 4Sc3B3C –0.520 0.144 10ScB2+ 4Sc4C3+ Sc2BC2= 7Sc4B3C2
        Ti –0.896 0.019 9TiB2+ TiC + Ti8C5= 6Ti3B3C –0.863 0.018 9TiB2+ 7TiC + Ti8C5= 6Ti4B3C2
        V –0.687 0.101 3VB + C = V3B3C –0.628 0.092 18VB + 7C + V6C5= 6V4B3C2
        Cr –0.294 0.159 3CrB + C = Cr3B3C –0.194 0.178 9CrB + 4C + Cr3C2= 3Cr4B3C2
        Mn –0.100 0.195 3MnB + C = Mn3B3C 0.024
        Fe 0.002 0.139
        Co 0.094 0.255
        Ni 0.296 0.456
        Cu 0.738 0.959
        Zn 0.713 0.929
        Y –0.385 0.089 9YB2+ 5Y2C + Y2B3C2= 7Y3B3C –0.283 0.160 6YB2+ 8Y2C + 3Y2B3C2= 7Y4B3C2
        Zr –0.851 0.019 3ZrB2+ 2ZrC + Zr = 2Zr3B3C –0.838 0.020 3ZrB2+ 4ZrC + Zr = 2Zr4B3C2
        Nb –0.698 –0.023 3NbB + C = Nb3B3C –0.661 –0.002 C + 6Nb3B3C + Nb6C5= 6Nb4B3C2
        Mo –0.257 0.175 3MoB + C = Mo3B3C –0.155 0.202 3MoB + C + MoC = Mo4B3C2
        Tc –0.005 0.326 12TcB2+ 11C + 3Tc7B3= 11Tc3B3C 0.138
        Ru 0.211 –0.369
        Rh 0.230 –0.406
        Pd 0.552 0.744
        Ag 1.027 1.295
        Cd 0.846 1.112
        Hf –0.920 0.016 3HfB2+ 2HfC + Hf = 2Hf3B3C –0.922 0.018 3HfB2+ 4HfC + Hf = 2Hf4B3C2
        Ta –0.704 0.003 3Ta3B4+ C + 3TaC = 4Ta3B3C –0.691 –0.010 3Ta3B4+ C + 7TaC = 4Ta4B3C2
        W –0.094 0.227 3WB + C = W3B3C –0.007 0.273 3WB + C + WC = W4B3C2
        Re 0.281 0.425
        Os 0.590 0.755
        Ir 0.604 0.758
        Pt 0.708 0.855
        Au 1.096 1.310
        Hg 1.186 1.333
        下载: 导出CSV

        结构 弹性常数 力学性能a 硬度
        C11 C22 C33 C44 C55 C66 C12 C13 C23 B G B/G HChen HTian
        Ta3B3C 569.6 514.4 563.5 194.1 180.0 261.8 187.1 147.3 173.9 295.9 200.8 1.47 25.3 25.3
        Ta4B3C2 581.1 535.3 602.1 197.3 185.1 275.8 200.3 146.0 170.2 305.7 209.0 1.46 26.2 26.2
        Nb3B3C 544.3 479.8 522.8 181.5 171.9 245.3 170.9 132.9 162.2 275.3 189.7 1.45 24.8 24.7
        Nb4B3C2 551.5 499.2 548.5 184.0 175.1 257.1 183.2 132.7 157.8 282.9 195.8 1.44 25.5 25.4
        TaB2 302 200 1.51 24.4 24.5
        NbB2 287 195 1.47 24.8 24.8
        TaC 324 215 1.51 25.6 25.9
        NbC 239 161 1.48 21.6 21.4
        SiC 213 187 1.14 33.6 32.2
        Al2O3 232 147 1.58 18.7 18.7
        TiN 259 180 1.44 24.3 24.0
        注:a二元相力学性能数据来自Materials Project网站.
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

      • [1] 王静, 高姗, 段香梅, 尹万健.钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 必威体育下载 , 2024, 73(6): 063101.doi:10.7498/aps.73.20231631
        [2] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳.机器学习辅助的WC-Co硬质合金硬度预测. 必威体育下载 , 2024, 73(12): 126201.doi:10.7498/aps.73.20240284
        [3] 周金萍, 李春梅, 姜博, 黄仁忠.Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究. 必威体育下载 , 2023, 72(15): 156301.doi:10.7498/aps.72.20230626
        [4] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波.氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 必威体育下载 , 2022, 71(19): 197901.doi:10.7498/aps.71.20220544
        [5] 刘子媛, 潘金波, 张余洋, 杜世萱.原子尺度构建二维材料的第一性原理计算研究. 必威体育下载 , 2021, 70(2): 027301.doi:10.7498/aps.70.20201636
        [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣.二维材料XTe2(X= Pd, Pt)热电性能的第一性原理计算. 必威体育下载 , 2021, 70(11): 116301.doi:10.7498/aps.70.20201939
        [7] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国.三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 必威体育下载 , 2020, 69(11): 116201.doi:10.7498/aps.69.20200234
        [8] 郑路敏, 钟淑英, 徐波, 欧阳楚英.锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 必威体育下载 , 2019, 68(13): 138201.doi:10.7498/aps.68.20190509
        [9] 王丹, 邹娟, 唐黎明.氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 必威体育下载 , 2019, 68(3): 037102.doi:10.7498/aps.68.20181597
        [10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎.空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 必威体育下载 , 2019, 68(24): 246301.doi:10.7498/aps.68.20191258
        [11] 陈献, 程梅娟, 吴顺情, 朱梓忠.石墨炔衍生物结构稳定性和电子结构的第一性原理研究. 必威体育下载 , 2017, 66(10): 107102.doi:10.7498/aps.66.107102
        [12] 白静, 王晓书, 俎启睿, 赵骧, 左良.Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 必威体育下载 , 2016, 65(9): 096103.doi:10.7498/aps.65.096103
        [13] 陈海军, 李高清, 薛具奎.变分法研究一维Bose-Fermi系统的稳定性. 必威体育下载 , 2011, 60(4): 040304.doi:10.7498/aps.60.040304.1
        [14] 屈年瑞, 高发明.固态二氧化碳电子结构及性能的理论研究. 必威体育下载 , 2011, 60(6): 067102.doi:10.7498/aps.60.067102
        [15] 汪志刚, 张杨, 文玉华, 朱梓忠.ZnO原子链的结构稳定性和电子性质的第一性原理研究. 必威体育下载 , 2010, 59(3): 2051-2056.doi:10.7498/aps.59.2051
        [16] 王作雷.一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 必威体育下载 , 2008, 57(8): 4771-4776.doi:10.7498/aps.57.4771
        [17] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英.插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 必威体育下载 , 2007, 56(8): 4817-4822.doi:10.7498/aps.56.4817
        [18] 谢 莉, 雷银照.线性瞬态涡流电磁场定解问题解的唯一性和稳定性. 必威体育下载 , 2006, 55(9): 4397-4406.doi:10.7498/aps.55.4397
        [19] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华.相变域硅薄膜材料的光稳定性. 必威体育下载 , 2006, 55(2): 947-951.doi:10.7498/aps.55.947
        [20] 张 凯, 冯 俊.相对论Birkhoff系统的对称性与稳定性. 必威体育下载 , 2005, 54(7): 2985-2989.doi:10.7498/aps.54.2985
      计量
      • 文章访问数:9239
      • PDF下载量:109
      • 被引次数:0
      出版历程
      • 收稿日期:2019-01-27
      • 修回日期:2019-03-05
      • 上网日期:2019-05-01
      • 刊出日期:2019-05-05

        返回文章
        返回
          Baidu
          map