搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏

Research progress of quantum memory

Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min
PDF
HTML
导出引用
  • 量子技术, 比如量子通信、量子计算, 具有经典技术所不具有的优势. 但是, 作为量子技术基本元素的量子态往往极为脆弱, 很容易受到外界环境的影响而丢失, 而且量子态的制造和量子操作往往是概率性的. 这种概率性使得远距离量子通信和大规模的量子计算很难实现, 除非有量子存储器将这些随机产生的量子态缓存并同步起来. 在过去的十几年中, 量子存储在各种各样的存储方案中得到了研究, 而且已经从最初的原理性演示逐步发展到了如今的近乎可实用化. 现如今, 量子存储领域追求的是可实用化, 而判断一个存储器是否可以实用化的基本标准是: 高存储效率、低噪音、长寿命(或者大的时间带宽积)和室温条件下运行. 通过介绍多个具有代表性的存储方案, 本文给出了量子存储领域的研究现状和发展趋势. 其中基于室温原子系综的宽带量子存储因其装置简单、实用性更强而广受关注. 但是由于噪音问题, 直到最近才在实验室中实现可工作在室温环境中的宽带FORD (far off-resonance Duan-Lukin-Cirac-Zoller)量子存储和梯形量子存储. 本文对多种存储方案的工作原理、优缺点进行了介绍, 对FORD方案之所以能够成功进行了分析, 还对量子存储的降噪方法进行了总结.
    Quantum technologies, for example, quantum communication and quantum computation, promise spectacular quantum enhanced advantages beyond what can be done classically. However, quantum states, as the element of quantum technologies, are very fragile and easily get lost to the environment, and meanwhile, their generation and quantum operations are mostly probabilistic. These problems make it exponentially hard to build long-distance quantum channels for quantum communication and large quantum systems for quantum computing. Quantum memory allows quantum states to be stored and retrieved in a programmable fashion, therefore providing an elegant solution to the probabilistic nature and associated limitation by coordinating asynchronous events. In the past decades, enormous advances in quantum memory have been made by developing various storage protocols and their physical implementations, and the quantum memory has gradually evolved from the initial conceptual demonstration to a nearly practical one. Aiming at being practicable for efficient synchronisation and physical scalability, an ideal quantum memory should meet several key features known as high efficiency, low noise level, large time bandwidth product (lifetime divided by pulse duration) and operating at room temperature. Here, we present the research status and development trends of this field by introducing some typical storage protocols. Among these protocols, a room-temperature broadband quantum memory is the most attractive due to its simplicity and practicability. However, at room temperature, noise becomes dominant and is a bottleneck problem that has impeded the realization of a real room-temperature broadband quantum memory in the last decades. Recently, the noise problem has been solved in two memory protocols, i.e. FORD (far off-resonance Duan-Lukin-Cirac-Zoller) protocol and ORCA (off-resonant cascaded absorption) protocol. In this paper, the working principles, the merits and demerits of various quantum memory protocols are illustrated. Furthermore, the approaches to eliminating noise and the applications of quantum memory are summarized.
        通信作者:金贤敏,xianmin.jin@sjtu.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2017YFA0303700)、国家自然科学基金(批准号: 11374211, 61734005, 11761141014, 11690033)、上海市科学技术委员会(批准号: 15QA1402200, 16JC1400405, 17JC1400403)、上海市教委(批准号: 16SG09, 2017-01-07-00-02-E00049)和国家青年千人计划资助的课题.
        Corresponding author:Jin Xian-Min,xianmin.jin@sjtu.edu.cn
      • Funds:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11374211, 61734005, 11761141014, 11690033), the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 15QA1402200, 16JC1400405, 17JC1400403), the Shanghai Municipal Education Commission, China (Grant Nos. 16SG09, 2017-01-07-00-02-E00049), and the National Young 1000 Talents Plan, China.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

    • 具有代表性的工作 存储方案 存储器温度 互关联函数g(2) 带宽 时间带宽积
      1 Phys. Rev. Lett.110083601 (2013) EIT 300 μK ≤2 <5 MHz 74
      2 Nature438837 (2005) EIT 303—320 K 2—3 ~1 MHz ~1
      3 Nature438833 (2005) EIT ~100 μK 8.5 12 MHz 120
      4 Nat. Photon.5628 (2011) EIT ~100 μK 10 5.5 MHz 13
      5 Phys. Rev. A75040101 (2007) DLCZ 333 K 1.3 1 MHz NA
      6 Nat. Phys.595 (2009) DLCZ 100 μK 37 <10 MHz <10000
      7 Opt. Lett.37142 (2012) DLCZ 310 K 4 1 MHz 5
      8 Nat. Photon.10381 (2016) DLCZ ~100 μK ~37 <10 MHz <2200000
      9 Nature461241 (2009) GEM 300K ≤2 1 MHz NA
      10 Nat. Commun.174 (2011) GEM 351 K ≤2 ~1 MHz ≤10
      11 Optica3100 (2016) GEM 100 μK ≤2 <10 MHz 84
      12 Nat. Photon.4218 (2010) Far off-resonance Raman 335.5 K ≤2 1.5 GHz 18
      13 Phys. Rev. Lett.107053603 (2011) Far off-resonance Raman 335.5 K ≤2 1.5 GHz 2250
      14 Phys. Rev. Lett.116090501 (2016) Far off-resonance Raman 343 K ≤2 1 GHz 95
      15 Nat. Photon.9332 (2015) Raman memory ~100 μK 13.6 140 MHz 200
      16 Nature432482 (2004) Off-resonant Faraday interaction 300 K ≤2 NA NA
      17 Phys. Rev. A97042316 (2018) Off-resonant cascaded absorption (ORCA) 364 K 120 1 GHz 5
      18 Commun. Phys.155 (2018) Far off-resonance DLCZ (FORD) 334 K 28 537 MHz 700
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

    • [1] 王云飞, 周颖, 王英, 颜辉, 朱诗亮.量子存储性能及应用分析. 必威体育下载 , 2023, 72(20): 206701.doi:10.7498/aps.72.20231203
      [2] 周宗权.量子存储式量子计算机与无噪声光子回波. 必威体育下载 , 2022, 71(7): 070305.doi:10.7498/aps.71.20212245
      [3] 邢雪燕, 李霞霞, 陈宇辉, 张向东.基于光子晶体微腔的回波光量子存储. 必威体育下载 , 2022, 71(11): 114201.doi:10.7498/aps.71.20220083
      [4] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东.基于掺铒晶体的光量子存储和调控. 必威体育下载 , 2022, 71(6): 064203.doi:10.7498/aps.71.20211803
      [5] 汪野, 张静宁, 金奇奂.相干时间超过10 min的单离子量子比特. 必威体育下载 , 2019, 68(3): 030306.doi:10.7498/aps.68.20181729
      [6] 杨天书, 周宗权, 李传锋, 郭光灿.多模式固态量子存储. 必威体育下载 , 2019, 68(3): 030303.doi:10.7498/aps.68.20182207
      [7] 史保森, 丁冬生, 张伟, 李恩泽.基于拉曼协议的量子存储. 必威体育下载 , 2019, 68(3): 034203.doi:10.7498/aps.68.20182215
      [8] 李明, 陈阳, 郭光灿, 任希锋.表面等离激元量子信息应用研究进展. 必威体育下载 , 2017, 66(14): 144202.doi:10.7498/aps.66.144202
      [9] 邓瑞婕, 闫智辉, 贾晓军.基于电磁诱导透明机制的压缩光场量子存储. 必威体育下载 , 2017, 66(7): 074201.doi:10.7498/aps.66.074201
      [10] 孙颖, 赵尚弘, 东晨.基于量子存储的长距离测量设备无关量子密钥分配研究. 必威体育下载 , 2015, 64(14): 140304.doi:10.7498/aps.64.140304
      [11] 李卓, 邢莉娟.差错基、量子码与群代数. 必威体育下载 , 2013, 62(13): 130306.doi:10.7498/aps.62.130306
      [12] 邢莉娟, 李卓, 张武军.加强的量子汉明限. 必威体育下载 , 2011, 60(5): 050304.doi:10.7498/aps.60.050304
      [13] 王云江, 白宝明, 王新梅.量子稀疏图码的反馈式迭代译码. 必威体育下载 , 2010, 59(11): 7591-7595.doi:10.7498/aps.59.7591
      [14] 尹辑文, 肖景林, 于毅夫, 王子武.库仑势对抛物量子点量子比特消相干的影响. 必威体育下载 , 2008, 57(5): 2695-2698.doi:10.7498/aps.57.2695
      [15] 邢莉娟, 李 卓, 白宝明, 王新梅.量子卷积码的编译码方法. 必威体育下载 , 2008, 57(8): 4695-4699.doi:10.7498/aps.57.4695
      [16] 李 卓, 邢莉娟.量子Generalized Reed-Solomon码. 必威体育下载 , 2008, 57(1): 28-30.doi:10.7498/aps.57.28
      [17] 李 卓, 邢莉娟.一类基于级联结构的量子好码. 必威体育下载 , 2007, 56(10): 5602-5606.doi:10.7498/aps.56.5602
      [18] 张权, 唐朝京, 张森强.B92量子密钥分配协议的变形及其无条件安全性证明. 必威体育下载 , 2002, 51(7): 1439-1447.doi:10.7498/aps.51.1439
      [19] 张权, 张尔扬.非对称二状态量子密钥分配协议最优参量研究. 必威体育下载 , 2002, 51(8): 1684-1689.doi:10.7498/aps.51.1684
      [20] 张权, 唐朝京, 高峰.量子Turbo码. 必威体育下载 , 2002, 51(1): 15-20.doi:10.7498/aps.51.15
    计量
    • 文章访问数:23119
    • PDF下载量:883
    • 被引次数:0
    出版历程
    • 收稿日期:2019-01-08
    • 修回日期:2019-01-19
    • 上网日期:2019-02-01
    • 刊出日期:2019-02-05

      返回文章
      返回
        Baidu
        map