搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    周大方, 蒋式勤, 赵晨, Petervan Leeuwen

    Current source reconstructing and magnetic imaging of cardiac electrical activity during P-wave

    Zhou Da-Fang, Jiang Shi-Qin, Zhao Chen, Peter van Leeuwen
    PDF
    HTML
    导出引用
    • 用超导量子干涉仪在人体胸腔表面测量的磁场数据重建心脏电流源及其成像, 是一种无创获取心脏电活动信息的新技术. 由于P波间期的心脏磁信号比R波峰值弱, 信噪比较低, 本文提出了一种可提高分布源空间谱估计强度对比度(IIC)的波束成形方法. 该方法分两步: 1)在空间滤波器的加权矩阵中引入导联场矩阵, 使滤波器输出估计对磁场电流源及其分布比较敏感. 通过求解逆问题, 可以改进重建分布源强度的对比度; 2)通过设置源强度阈值, 提取每个时刻重建源中偶极矩强度极大的电流源, 消除其他位置上相对弱的伪源, 可提高P波间期电流源重建的精度. 文中采用理论分析与仿真试验, 比较了IIC与3种其他电流源重建方法的性能. 结果表明, IIC的单源空间谱估计的强度对比度较高, 电流源重建精度相对较好. 文中还分析了2个健康人的61通道心磁测量数据, 以及他们P波间期的心脏电活动成像. 与其他3种方法相比, IIC的电流源成像结果最优. 能够显示健康人P波峰时刻心房的电活动较心室强. P波间期右心房除极时, 心脏电活动具有方向特征.
      The current source reconstruction and magnetic imaging is a new technique to non-invasively obtain spatial information regarding cardiac electrical activity using magnetocardiogram (MCG) signals measured by the superconducting quantum interference device (SQUID) on the human thorax surface. Using MCG signals to reconstruct distributed current sources needs to solve the inverse problem of magnetic field. The beamforming is a type of spatial filter method that has been used for distributed source reconstruction and source imaging in electroencephalogram (EEG) and magnetoencephalogram (MEG). In this paper, the dipole moment of distributed current source is estimated with corresponding each spatial filter based on the cardiac source field model. The purpose is to enhance the intensity contrast of the dipole moment of distributed current sources in distributed source spatial spectrum estimation with beamforming, so that the reconstructed-pseudo sources beyond the heart can be removed for imaging cardiac electric activity well. A new beamforming method of improving intensity contrast (IIC) of distributed source spatial spectrum estimation is developed for imaging cardiac electric activity in P-wave, due to cardiac magnetic signals in P-wave lower than that of the peak value of R-wave, which has a relatively low signal-to-noise ratio (SNR). For enhancing the accuracy of current source reconstruction in P-wave, the IIC divided into two steps: firstly, to introduce the lead-field matrix, which represents the measurement sensor-array sensitivity to magnetic field current sources, into a weight matrix of the spatial filter for making the output estimation of the filter more sensitive to the current sourcedistribution, so as to improve the intensity contrast of the reconstructed distributed sources.Secondly, by setting a threshold of source intensity from experience, to extract the reconstructed source with locally-maximal dipole strength at each time for eliminating the relatively weak pseudo sources in other locations, so as to enhance the accuracy of current source reconstruction during P-wave. In this paper, the IIC and three other methods, including minimum variance beamforming (MVB), suppressing spatial filter output noise-power gain (SONG) and trust region reflective (TRR), are compared by using the theoretical analysis and simulation experiments of MCG current source reconstruction during P-wave. The results show that the IIC has higher intensity contrast of the single source spatial spectrum estimation, and possesses better accuracy of the current source reconstruction. The 61-channel MCG signals of two healthy subjects and their imaging of cardiac electrical activity during P-wave also are analyzed. The result shows that the IIC is better than the other three methods. It is indicated that two healthy subjects have stronger electrical activity in the atrium than that in the ventricle at Ppeak time, also that the electrical activity has the direction feature when the right-atrium is depolarized during P-wave. In summary, the IIC is useful for imaging the cardiac electrical activity. However, it is needed to carry out a further research on patients with local myocardial ischemia and left or right coronary artery stenosis, and to establish the evaluation index for imaging of cardiac electrical activity in such patients.
          通信作者:蒋式勤,sqjiang@tongji.edu.cn
        • 基金项目:国家自然科学基金(批准号: 60771030)、国家高技术研究发展计划(批准号: 2008AA02Z308)、上海市科学技术发展基金(批准号: 08JC1421800)、中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室开放项目(批准号: SKL2013010)和复旦大学上海医学院上海市医学图像计算与计算机辅助干预重点实验室开放项目(批准号: 13DZ2272200-2)资助的课题.
          Corresponding author:Jiang Shi-Qin,sqjiang@tongji.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 60771030), the National High Technology Research and Development Program of China (Grant No. 2008AA02Z308), the Shanghai Foundation for Development of Science and Technology, China (Grant No. 08JC1421800), the Open Project of State Key Laboratory of Function Materials for Information, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China (Grant No. SKL2013010), and the Open Project of Key Laboratory of Medical Image Computing and Computer Assisted Intervention of Shanghai, Shanghai Medical College of Fudan University, China (Grant No. 13DZ2272200-2)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

      • 参数设置 方法 单源估计误差/cm
        MV/m/s SNR/dB E EX EY EZ
        $\sqrt 3 $ 无噪声 IIC 1.29 0.75 0.75 0.75
        SONG 1.27 0.74 0.74 0.74
        MVB 1.39 0.80 0.80 0.80
        TRR 0.72 0.52 0.24 0.43
        30 IIC 1.37 0.79 0.79 0.79
        SONG 1.73 1.13 0.81 1.04
        MVB 5.76 3.08 3.73 3.12
        TRR 1.50 0.83 0.17 1.24
        20 IIC 1.19 0.68 0.68 0.68
        SONG 1.67 1.17 0.69 0.98
        MVB 6.73 4.04 3.88 3.74
        TRR 2.13 1.17 1.26 1.26
        下载: 导出CSV

        参数设置 方法 一条路径的源估计误差/cm 另一路径的源估计误差/cm
        MV/m/s SNR/dB E EX EY EZ E EX EY EZ
        1 无噪声 IIC 1.71 1.07 0.80 1.07 0.82 0 0.82 0
        SONG 1.70 1.07 0.79 1.07 1.05 0.47 0.81 0.47
        MVB 2.73 0.85 2.45 0.84 2.80 1.53 1.66 1.64
        TRR * * * * * * * *
        30 IIC 1.73 1.06 0.86 1.06 1.76 1.03 0.80 1.18
        SONG 1.98 1.09 1.26 1.07 2.18 1.33 1.01 1.40
        MVB 5.00 2.47 4.15 1.30 4.93 1.84 3.27 3.20
        TRR * * * * * * * *
        20 IIC 1.66 0.96 0.92 1.00 2.44 1.52 1.38 1.32
        SONG 6.51 2.26 6.01 1.04 4.13 2.04 3.01 1.96
        MVB 5.62 2.58 4.84 1.24 5.20 2.05 3.57 3.17
        TRR * * * * * * * *
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

      • [1] 刘金品, 王秉中, 陈传升, 王任.基于深度物理启发神经网络的微波波导器件逆设计方法. 必威体育下载 , 2023, 72(8): 080201.doi:10.7498/aps.72.20230031
        [2] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国.磁性斯格明子的多场调控研究. 必威体育下载 , 2018, 67(13): 137507.doi:10.7498/aps.67.20180931
        [3] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰.基于金刚石NV色心的纳米尺度磁场测量和成像技术. 必威体育下载 , 2018, 67(13): 130701.doi:10.7498/aps.67.20180243
        [4] 周大方, 张树林, 蒋式勤.用于心脏电活动成像的空间滤波器输出噪声抑制方法. 必威体育下载 , 2018, 67(15): 158702.doi:10.7498/aps.67.20180294
        [5] 黄卫立.一般完整系统Mei对称性的逆问题. 必威体育下载 , 2015, 64(17): 170202.doi:10.7498/aps.64.170202
        [6] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴.小宽带光谱色散匀滑光束传输特性研究. 必威体育下载 , 2014, 63(16): 164201.doi:10.7498/aps.63.164201
        [7] 赵晨, 蒋式勤, 石明伟, 朱俊杰.非均匀电磁介质中的等效源重构. 必威体育下载 , 2014, 63(7): 078702.doi:10.7498/aps.63.078702
        [8] 朱俊杰, 蒋式勤, 王伟远, 赵晨, 王永良, 李文生, 权薇薇.多腔体心脏磁场模型的研究与应用. 必威体育下载 , 2014, 63(5): 058703.doi:10.7498/aps.63.058703
        [9] 邴璐, 王伟远, 王永良, 蒋式勤.基于贪婪稀疏方法的心脏磁场源重构. 必威体育下载 , 2013, 62(11): 118703.doi:10.7498/aps.62.118703
        [10] 丁光涛.一类Painleve方程的Lagrange函数族. 必威体育下载 , 2012, 61(11): 110202.doi:10.7498/aps.61.110202
        [11] 韩建, 巴音贺希格, 李文昊.全息光栅曝光系统中空间滤波器孔径与激光束腰关系的选择方法. 必威体育下载 , 2012, 61(8): 084202.doi:10.7498/aps.61.084202
        [12] 丁光涛.一维变系数耗散系统Lagrange函数和Hamilton函数的新构造方法. 必威体育下载 , 2011, 60(4): 044503.doi:10.7498/aps.60.044503
        [13] 高妍琦, 朱宝强, 刘代中, 彭增云, 林尊琪.神光Ⅱ升级装置远场准直系统研究. 必威体育下载 , 2011, 60(6): 065204.doi:10.7498/aps.60.065204
        [14] 丁光涛.关于Birkhoff表示的Lagrange像的研究. 必威体育下载 , 2010, 59(1): 15-19.doi:10.7498/aps.59.15
        [15] 丁光涛.Hamilton系统Noether理论的新型逆问题. 必威体育下载 , 2010, 59(3): 1423-1427.doi:10.7498/aps.59.1423
        [16] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏.一种高功率微波空间滤波器的设计与初步实验研究. 必威体育下载 , 2010, 59(12): 8591-8596.doi:10.7498/aps.59.8591
        [17] 曾曙光, 张彬.光参量啁啾脉冲放大的逆问题. 必威体育下载 , 2009, 58(4): 2476-2481.doi:10.7498/aps.58.2476
        [18] 楚晓亮, 张 彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王 逍, 王晓东, 周凯南, 郭 仪.啁啾脉冲多程放大及其逆问题的研究. 必威体育下载 , 2005, 54(10): 4696-4700.doi:10.7498/aps.54.4696
        [19] 于 飞, 陈心昭, 李卫兵, 陈 剑.空间声场全息重建的波叠加方法研究. 必威体育下载 , 2004, 53(8): 2607-2613.doi:10.7498/aps.53.2607
        [20] 朱红毅, 沈建其, 李 军.一种新的求解脑磁逆问题的搜索方法. 必威体育下载 , 2004, 53(3): 947-951.doi:10.7498/aps.53.947
      计量
      • 文章访问数:6269
      • PDF下载量:43
      • 被引次数:0
      出版历程
      • 收稿日期:2019-01-02
      • 修回日期:2019-04-25
      • 上网日期:2019-07-01
      • 刊出日期:2019-07-05

        返回文章
        返回
          Baidu
          map