-
利用非线性光学(NLO)晶体材料和变频技术, 可以把波长范围有限的激光光源扩展到紫外、深紫外区, 这已成为深紫外光源的热点研究方向. 然而, 目前限制深紫外全固态激光器发展和应用的关键问题是缺乏能够在该波段进行频率转换并且产业化应用的NLO晶体材料. 因此, 该领域的各国科学家都在积极探索并发展新一代的深紫外NLO晶体材料. 目前仅有KBe 2BO 3F 2(KBBF)晶体能够实现Nd:YAG的直接六倍频深紫外激光(波长为177.3 nm)输出. 然而, KBBF晶体存在严重的层状生长习性, 并且其原料氧化铍有剧毒, 从而极大地制约了其商业化生产和应用进程. 根据阴离子基团理论, 以BO 3基团为基本结构单元形成的类[Be 2BO 3F]层状结构特征仍然是目前最有利于产生深紫外谐波的适宜结构之一, 因此, 基于KBBF层状结构进行分子工程设计, 并开发类KBBF结构的硼酸盐可能是探索新材料的优选策略. 本文通过回顾类KBBF结构硼酸盐深紫外NLO晶体的发展历程, 系统梳理该类晶体材料层状结构特点、不同层间连接方式和光学性能, 分析限制深紫外NLO晶体发展的主要因素, 讨论目前发展类KBBF结构硼酸盐深紫外NLO晶体材料的主要矛盾和解决策略, 以期对未来新材料的创新探索提供借鉴.The use of nonlinear optical crystal materials to extend the limited range of laser sources to the deep-ultraviolet (deep-UV, λ < 200 nm) regions by various frequency conversion techniques, has become an attractive field for generating deep-UV light. However, the lack of nonlinear optics (NLO) crystal materials capable of frequency conversion in the deep-UV light range, limits the development and application of deep-UV all-solid-state lasers. Therefore, scientists all over the world are actively exploring the new generation of deep-UV NLO crystal materials. At present, only the KBe 2BO 3F 2(KBBF) crystal is capable of generating deep-UV light through the direct sixth harmonic generation of the Nd:YAG laser. The infinite ∞[Be 2BO 3F 2] −single layers, as the brilliant building blocks in the crystal structures of KBBF family, provide a relatively large second harmonic generation coefficient ( d 11= 0.47 pm/V) and a sufficient birefringence (Δ n= 0.07@1064 nm). However, the KBBF crystals have insurmountable intrinsic defects, such as the usage of high toxic beryllium oxide, and the serious layer growth habit, which greatly restrict its commercialization process. Since the layered structure of the KBBF crystal is still one of the most brilliant structures for generating deep-UV laser, an effective strategy is to change the interlayer connection mode and develop new NLO materials based on KBBF with less layering growth habit. In this paper, by reviewing the development history of borate deep-UV NLO crystals and the derivatives of KBBF, the relationship between layered structure and optical properties of different interlaminar connections of crystal materials is systematically analyzed. We discuss the main contradictions and solutions of the development of deep-UV NLO crystal materials which are similar to the KBBF structure. In order to provide a reference for the innovative exploration of new materials in the future, several design strategies are also proposed.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] -
化合物 空间群 结构 层间连接 紫外截止边/nm deff(KDP)或dij/pm·V—1 NaBe2BO3F2[20] C2 [Be2BO3F2]∞ Na+—F− 155 deff= 1.7 ×deff(NH4H2PO4) KBe2BO3F2[20] R32 [Be2BO3F2]∞ K+—F− 147 d11= 0.47 ± 0.01 RbBe2BO3F2[21] R32 [Be2BO3F2]∞ Rb+—F− 160 d11= 0.45 ± 0.01 CsBe2BO3F2[22] R32 [Be2BO3F2]∞ Cs+—F− 151 d11= 0.5 NH4Be2BO3F2[48] R32 [Be2BO3F2]∞ N—H·F 153 1.2 $\gamma $-Be2BO3F[48] R32 [Be2BO3F2]∞ Be2+—F− 144.8 2.3 RbZn2BO3Cl2[63,81] R32 [Zn2BO3Cl2]∞ Rb+—Cl− 198 2.9 KZn2BO3Cl2[63,81] R32 [Zn2BO3Cl2]∞ K+—Cl− 193 3.0 NH4Zn2BO3Cl2[63] R32 [Zn2BO3Cl2]∞ N—H·Cl 186 2.8 Be2(BO3)F[43] C2 [Be2BO3F2]∞ Be2+—F− 150a 0.25 BaBe2BO3F3[43] P63 [Be2BO3F2]∞ Ba2+—F− < 185 0.1 K2Al2B2O7[50,52] P321 [Al3B3O6]∞ Al3+—O2− 180 0.45 K2(1-x)Na2xAl2BO7[88](0 <x< 0.6) P321 [Al3B3O6]∞ Al3+—O2− 180 0.45 K2(1−x)Rb2xAl2B2O7[82](0 <x< 0.75) P321 [Al3B3O6]∞ Al3+—O2− — 0.7 K0.67Rb1.33Al2B2O7[83] P321 [Al3B3O6]∞ Al3+—O2− 188 0.9 $\beta$-Rb2Al2B2O7[51] P321 [Al3B3O6]∞ Al3+—O2− < 200 2.0 BaAlBO3F2[84] $ P{\overline 6}2c$ [AlBO3F2]∞ Ba2+—F− 165 2.0 Rb3Al3B3O10F[54] P31c [Al3(BO3)OF]∞ Al3+—F−Al3+—O2− < 200 1.2 BaZnBO3F[64] $ P{\overline 6}$ [ZnBO3F]∞ Zn2+—O2− — 3 ×deff Ba3Mg3(BO3)3F3[87] Pna21 [Mg3O2F3(BO3)2]∞ Ba2+—F− 184 d33= 0.51 注: 上标a为计算值. 化合物 空间群 结构 层间连接 紫外截止边/nm 倍频效应(KDP)或dij//pm·V−1 Sr2Be2B2O7[39] $ P{\overline 6}c2$ [Be2(BO3)2O]∞ Sr2+—O2− 155 2.5 Ba2Be2B2O7[40,73] $ P{\overline 6}2c$ [Be2(BO3)2O]∞ Ba2+—O2− 215 2.0 BaAl2B2O7[52] R32 [Al6B6O12]∞ Al3+—O2− — d11= 0.75 NaCaBe2B2O6F[41] Cc [Be3B3O6F3]∞ Ca2+—O2− 190 0.3 K3Ba3Li2Al4B6O20F[55] $ P{\overline 6}2c$ [Li2Al4B6O20F]∞ Ba2+—O2− 190 1.5 Rb3Ba3Li2Al4B6O20F[89] $ P{\overline 6}2c$ [Li2Al4B6O20F]∞ Ba2+—O2− 195 1.4 K3Sr3Li2Al4B6O20F[57] R32 [Li2Al4B6O20F]∞ Sr2+—O2− 190 1.7 (0.9) Cs2Al2(B3O6)2O[90] P63 [Al2(B3O6)2O] Al3+—O2− 185 d31= 0.032 化合物 空间群 结构 层间连接方式 紫外截止边/nm 倍频效应(KDP) NH4B4O6F[69] Pna21 [B4O6F]∞ N—H·F 156 3.0 CsB4O6F[71] Pna21 [B4O6F]∞ Cs+—F− 155 1.9 RbB4O6F[70] Pna21 [B4O6F]∞ Rb+—F− < 190 0.8 CsKB8O12F2[70] P321 [B4O6F]∞ Cs/K+—F− < 190 1.9 CsRbB8O12F2[70] $ P{\overline 6}2c$ [B4O6F]∞ Cs/K+—F− < 190 1.1 NaB4O6F[72] C2 [B4O6F]∞ Na+—F− < 180 0.9 SrB5O7F3[98] Cmc21 [B5O7F3]∞ Sr2+—F− < 180 1.6 Sr2B10O14F6[99] < 200 2.5 CaB5O7F3[97] Cmc21 [B5O7F3]∞ Ca2+—F− < 180 2.0 Ca2B10O14F6[99] < 200 2.3 化合物 空间群 结构 层间连接方式 紫外截止边/nm 倍频效应(KDP) $ \beta $-KBe2B3O7[44] Pmn21 [Be2BO5]∞ [BO2]∞ < 200 0.75 $\gamma $-KBe2B3O7[44] P21 [Be2BO5]∞ [B3O6] < 200 0.68 RbBe2B3O7[44] Pmn21 [Be2BO5]∞ [BO2]∞ < 200 0.79 Na2CsBe6B5O15[45] C2 [Be2BO5]∞ [BO3] < 200 1.17 Na2Be4B4O11[46] P1 [Be2BO5]∞ [B2O5] 171 1.30 LiNa5Be12B12O23[46] Pc [Be2BO5]∞ [B2O5] 169 1.40 Li4Sr(BO3)2[67] Cc [SrBO3]∞ [B2O3] 186 2.00 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105]
计量
- 文章访问数:13500
- PDF下载量:195
- 被引次数:0