\begin{document}${\text{μ}}{\rm{s}}$\end{document}."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

郭道友, 李培刚, 陈政委, 吴真平, 唐为华

Ultra-wide bandgap semiconductor of β-Ga2O3and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector

Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua
PDF
HTML
导出引用
  • β-Ga 2O 3是一种新型的超宽禁带氧化物半导体, 禁带宽度约为4.9 eV, 对应日盲区, 对波长大于253 nm的深紫外—可见光具有高的透过率, 是天然的日盲紫外探测及深紫外透明电极材料. 本文介绍了Ga 2O 3材料的晶体结构、基本物性与器件应用, 并综述了 β-Ga 2O 3在深紫外透明导电电极和日盲紫外探测器中的最新研究进展. Sn掺杂的Ga 2O 3薄膜电导率可达到32.3 S/cm, 透过率大于88%, 但离商业化的透明导电电极还存在较大差距. 在日盲紫外探测器应用方面, 基于异质结结构的器件展现出更高的光响应度和更快的响应速度, ZnO/Ga 2O 3核/壳微米线的探测器综合性能最佳, 在–6 V偏压下其对254 nm深紫外光的光响应度达1.3 × 10 3A/W, 响应时间为20 ${\text{μ}}{\rm{s}}$ .
    Gallium oxide (Ga 2O 3), with a bandgap of about 4.9 eV, is a new type of ultra-wide bandgap semiconductor material. The Ga 2O 3can crystallize into five different phases, i.e. α, β, γ, δ, and ε-phase. Among them, the monoclinic β-Ga 2O 3(space group: C2/m) with the lattice parameters of a= 12.23 Å, b= 3.04 Å, c= 5.80 Å, and β= 103.7° has been recognized as the most stable phase. The β-Ga 2O 3can be grown in bulk form from edge-defined film-fed growth with a low-cost method. With a high theoretical breakdown electrical field (8 MV/cm) and large Baliga’s figure of merit, the β-Ga 2O 3is a potential candidate material for next-generation high-power electronics (including diode and field effect transistor) and extreme environment electronics [high temperature, high radiation, and high voltage (low power) switching]. Due to a high transmittance to the deep ultraviolet-visible light with a wavelength longer than 253 nm, the β-Ga 2O 3is a natural material for solar-blind ultraviolet detection and deep-ultraviolet transparent conductive electrode. In this paper, the crystal structure, physical properties and device applications of Ga 2O 3material are introduced. And the latest research progress of β-Ga 2O 3in deep ultraviolet transparent conductive electrode and solar-blind ultraviolet photodetector are reviewed. Although Sn doped Ga 2O 3thin film has a conductivity of up to 32.3 S/cm and a transmittance greater than 88%, there is still a long way to go for commercial transparent conductive electrode. At the same time, the development history of β-Ga 2O 3solar-blind ultraviolet photodetectors based on material type (nanometer, single crystal and thin film) is described in chronological order. The photodetector based on quasi-two-dimensional β-Ga 2O 3flakes shows the highest responsivity (1.8 × 10 5A/W). The photodetector based on ZnO/Ga 2O 3core/shell micron-wire has a best comprehensive performance, which exhibits a responsivity of 1.3 × 10 3A/W and a response time ranging from 20 ${\text{μ}}{\rm{s}}$ to 254 nm light at –6 V. We look forward to applying the β-Ga 2O 3based solar-blind ultraviolet photodetectors to military (such as: missile early warning and tracking, ultraviolet communication, harbor fog navigation, and so on) and civilian fields (such as ozone hole monitoring, disinfection and sterilization ultraviolet intensity monitoring, high voltage corona detection, forest fire ultraviolet monitoring, and so on).
        通信作者:唐为华,whtang@bupt.edu.cn
      • 基金项目:国家自然科学基金(批准号: 61704153, 51572241, 61774019, 51572033)和北京市科委(批准号: SX2018-04)资助的课题.
        Corresponding author:Tang Wei-Hua,whtang@bupt.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 61704153, 51572241, 61774019, 51572033) and Beijing Municipal Commission of Science and Technology, China (Grant No. SX2018-04).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

    • 材料 Si GaAs GaP 4H-SiC ZnO GaN ß-Ga2O3 Diamond AlN MgO
      带隙Eg/eV 1.1 1.43 2.27 3.3 3.35 3.4 4.2—4.9 5.5 6.2 7.8
      迁移率${\text{μ}}$/cm2·Vs–1 1400 8500 350 1000 200 1200 300 2000 135
      击穿电场强度Eb/MV·cm–1 0.3 0.6 1.0 2.5 3.3 8 10 2
      相对介电常数ε 11.8 12.9 11.1 9.7 8.7 9 10 5.5 8.5 9.9
      导热率/W·cm–1·K–1 1.5 0.55 1.1 2.7 0.6 2.1 0.23[010] 0.13[100] 10 3.2
      巴利加优值/$\varepsilon {\text{μ}} {E_{\rm{b}}}^3$ 1 15 340 870 3444 24664
      下载: 导出CSV

      薄膜类型 电导率/S·cm–1 面电阻/Ω·sq–1 载流子浓度/cm–3 迁移率/cm2·V–1·s–1 透过率/% 参考文献
      Ga2O3薄膜 7.6 - - - 85 [80]
      Sn:Ga2O3薄膜 1 - 1.4 × 1019 0.44 80 [78]
      Sn:Ga2O3薄膜 8.2 - - < 0.44 80 [24]
      Sn:Ga2O3薄膜 8.3 - - 12.03 85 [81]
      Sn:Ga2O3薄膜 32.3 - 2.4 × 1020 0.74 88 [82]
      Sn:Ga2O3单晶 23.4 - 2.3 × 1018 64.7 85 [79]
      (Ga, In)2O3薄膜 1.72 × 103 - 5 × 1020 - > 95 [83]
      Ga2O3/ITO薄膜 - 164 - - > 94 [84]
      Ga2O3/ITO薄膜 - 49 - - 93.8 [85]
      Ag/Ga2O3薄膜 - 42 - - 91 [86]
      Ga2O3/Cu/ITO - 50 - - 86 [87]
      下载: 导出CSV

      通信类别 非视距通信 抗干扰、防窃听 相对运动信号接收 传播距离调控 受环境气候时间影响
      无线电通信 易被干扰和窃听 很差 受环境影响
      激光通信 抗干扰、防窃听 较差 受环境影响
      红外通信 较易干扰、防窃听 较差 受环境时间影响
      紫外通信 抗干扰、防窃听 很好 很小、全天候
      下载: 导出CSV

      光电探测器类型 光响应度/A·W–1 量子效率/% 暗电流/A 光暗比 响应时间/s 参考文献
      Ga2O3纳米线 - - 10–12 ≈ 2 × 103 2.2 × 10–1 [91]
      Ga2O3纳米线 - - < 10–12 3 × 104 < 2 × 10–2 [88]
      Ga2O3纳米线 8.0 × 10–4 0.39 2.4 × 10–10 ≈ 102 - [92]
      Ga2O3纳米线 3.4 × 10–3 1.37 - ≈ 102 - [93]
      ZnO/Ga2O3核壳微米线 1.3 × 103(–6 V) - 10–10 ≈ 106 2 × 10–5 [100]
      ZnO/Ga2O3核壳微米线 9.7 × 10–3(0 V) - 10–10 ≈ 7 × 102 10–4 [101]
      Ga2O3纳米线 6 × 10–4 - 10–11 ≈ 102 6.4 × 10–5 [102]
      Ga2O3纳米线 3.77 × 102 2.0 × 105 10–11 103 0.21 [107]
      石墨烯/Ga2O3纳米线 1.85 × 10-1 - 10–5 - 8 × 10–3 [108]
      Ga2O3纳米片 3.3 1.6 × 103 10–9 10 3 × 10–2 [96]
      Ga2O3纳米花(γ) - - 10–9 2.2 × 102 10–1 [97]
      Ga2O3纳米带 3.37 × 101 1.67 × 104 10–13 4.0 × 102 8.6 × 101 [94]
      Ga2O3纳米带 8.51 × 102 4.2 × 103 10–13 ≈ 103 < 3 × 10–1 [98]
      Ga2O3纳米带 1.93 × 101 9.4 × 103 10–10 ≈ 104 < 2 × 10–2 [99]
      In:Ga2O3纳米带 5.47 × 102 2.72 × 105 10–13 9.1 × 102 1 [95]
      Ga2O3微米带 1.8 × 105(–30 V) 8.8 × 105 10–6 2.57 0.67 [103]
      Ga2O3微米带 - - 10–4 - 1.4 [104]
      Ga2O3微米带 1.68 - 10–13 1.9 × 103 0.53 [105]
      石墨烯/Ga2O3微米带 2.98 × 101 - 10–13 ≈ 104 - [106]
      Ga2O3单晶 2.6—8.7 - 10–10 ≈ 103 - [109]
      Ga2O3单晶 3.7 × 10–2 1.8 × 101 10–10 1.5 × 104 9 × 10–3 [89]
      Ga2O3单晶 103 - 10–10 ≈ 106 - [110]
      Ga2O3单晶 4.3 2.1 × 101 10–11 105 - [111]
      石墨烯/Ga2O3单晶 3.93 × 101 1.96 × 104 10–6 103 2.2 × 102 [112]
      Ga2O3单晶 5 × 10–2 - 10–5 102 2.4 × 10–1 [160]
      Ga2O3单晶 3 × 10–3 - 10–8 101 1.4 × 10–1 [113]
      Ga2O3薄膜 8 × 10–5 - - - - [116]
      Ga2O3薄膜 3.7 × 10–2 1.8 × 101 10–9 - - [90]
      Ga2O3薄膜 4.53 × 10–1 > 102 10–10 105 - [117]
      Ga2O3薄膜 ≈ 101 - 10–10 103 - [118]
      Ga2O3薄膜 ≈ 101 - 10–7 103 - [119]
      Ga2O3薄膜 ≈ 102 - 10–10 102 - [120]
      Ga2O3薄膜 - - 10–11 105 - [122]
      Ga2O3薄膜 7.6 × 10–1 - 10–10 6 5 × 10–2 [152]
      Ga2O3薄膜 1.7 × 101 8.2 × 103 10–9 8.5 × 106 - [153]
      Ga2O3薄膜 - - 10–11 102 8 × 10–1 [154]
      Ga2O3薄膜 9.03 × 10–1 - 10–11 105 - [155]
      Ga2O3薄膜 2.59 × 102 7.9 × 104 10–10 104 4 × 10–1 [156]
      Ga2O3薄膜 - - 10–7 15 - [157]
      Ga2O3薄膜/晶体 1.8 8.7 × 102 10–6 36.9 - [158]
      a-GaOx非晶薄膜 7.0 × 101 - 10–10 1.2 × 105 2 × 10–2 [159]
      Ga2O3薄膜 4.2 - 10–11 1.6 × 104 4 × 10–2 [159]
      Ga2O3薄膜 9 × 10–3 - 10–5 101 1.8 × 10–1 [160]
      Al:Ga2O3薄膜 1.5 7.8 × 102 - - - [164]
      Si:Ga2O3薄膜 6 × 101 3 × 104 - 9 - [166]
      Si:Ga2O3薄膜 3.6 × 101 1.75 × 104 - 9 - [167]
      Zn:Ga2O3薄膜 2.1 × 102 - 10–11 5 × 104 1.4 [168]
      Ga2O3非晶薄膜 1.9 × 10–1 - 10–12 106 1.9 × 10–5 [169]
      Ga2O3非晶薄膜 4.5 × 101 - 10–10 104 2.97 × 10–6 [171]
      Ga2O3薄膜 1.5 - 10–9 103 - [175]
      Ga2O3薄膜 0.29 1.34 10–8 1.6 × 103 0.1 [173]
      Ga2O3薄膜 0.11 - 10–9 3.5 × 103 0.45 [174]
      Ga2O3薄膜 0.14 - 10–11 1.4 × 106 0.2 [174]
      Ga2O3薄膜 1.5 - 10–8 103 - [173]
      Ga2O3薄膜 2.6 × 101 - 10–8 104 0.18 [176]
      石墨烯/Ga2O3薄膜 1.28 × 101 - 10–8 - 2 × 10–3 [177]
      Ga2O3薄膜 9.6 × 101 4.76 × 104 10–6 - - [180]
      Ga2O3薄膜 5.86 × 10–5 - 10–9 1.8 × 101 0.1 [181]
      Ga2O3薄膜 1.5 × 102 7 × 104 10–11 105 1.3 [165]
      Ga2O3薄膜 1 × 10–1 - 10–8 - - [178]
      Ga2O3薄膜 - - 10–8 6 8.6 × 10–1 [123]
      Ga2O3薄膜 - - 10–9 1.3 × 101 6.2 × 10–1 [126]
      Ga2O3/Ga/Ga2O3薄膜 2.854 - 10–11 8×105 - [170]
      Mn:Ga2O3薄膜 7 × 10–2 3.6 × 101 10–9 6.7 × 101 2.8 × 10–1 [127]
      α-Ga2O3薄膜 1.5 × 10–2 7.39 10–9 3 × 101 - [137]
      α-Sn:Ga2O3薄膜 9.6 × 10–2 - 10–9 1.4 × 102 1.08 [132]
      α-Sn:Ga2O3薄膜 - - 10–7 4 8.73 [131]
      ε-Sn:Ga2O3薄膜 6.05 × 10–3 3.02 10–9 46.46 - [133]
      β-Sn:Ga2O3薄膜 3.61 × 10–2 - 10–8 19 1.37 [166]
      Zn:Ga2O3薄膜 - - 10–9 2 1.23 [134]
      Er:Ga2O3薄膜 - - 10–9 2.5 1.6 × 10–1 [76]
      Au NPs/Ga2O3薄膜 102 - 10–6 > 2 × 102 - [139]
      Ga2O3/p-Si异质结 3.7 × 102 1.8 × 105 10–8 9.4 × 102 1.8 [143]
      Ga2O3/ZnO异质结 3.5 × 10–1 1.7 × 102 10–10 1.5 × 101 6.2 × 10–1 [144]
      Ga2O3/NSTO异质结 4.3 × 101 2.1 × 104 10–6 2 × 101 7 × 10–2 [142]
      Ga2O3/Ga:ZnO异质结 7.6 × 10–4 - 10–9 2.6 × 102 2.7 × 10–1 [145]
      p-Si/i-SiC/n-Ga2O3 - - 10–8 5.4 × 103 - [148]
      石墨烯/Ga2O3/SiC 1.8 × 10–1 - 10–5 6.3 × 101 1.7 [149]
      石墨烯/Ga2O3/石墨烯 9.66 - 10–9 8.3 × 101 0.96 [138]
      Ga2O3/SiC/Al2O3 - - 10–9 7.7 - [141]
      Ga2O3/Al2O3 1.4 - 10–7 9.04 1.26 [140]
      Ga2O3/SiC异质结 7 × 10–2 - 10–10 - 9 × 10–3 [121]
      Ga2O3/GaN异质结 5.4 × 10–2 - 10–6 1.5 × 102 8 × 10–2 [146]
      Sn:Ga2O3/GaN异质结 3.05 - 10–11 104 1.8 × 10–2 [147]
      α-Ga2O3/ZnO异质结 1.1 × 104(–40 V) - 10–12 - 2.4 × 10–4 [172]
      Ga2O3/金刚石异质结 2 × 10–4 - 10–9 3.7 × 101 - [179]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

    • [1] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华.基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 必威体育下载 , 2024, 73(6): 067301.doi:10.7498/aps.73.20231698
      [2] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟.基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 必威体育下载 , 2024, 73(15): 157102.doi:10.7498/aps.73.20240630
      [3] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志.氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 必威体育下载 , 2024, 73(9): 098501.doi:10.7498/aps.73.20240186
      [4] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华.基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 必威体育下载 , 2024, 73(11): 118502.doi:10.7498/aps.73.20240267
      [5] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$ -Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 必威体育下载 , 2023, 72(21): 214202.doi:10.7498/aps.72.20231173
      [6] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华.关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析. 必威体育下载 , 2023, 72(2): 027301.doi:10.7498/aps.72.20221738
      [7] 况丹, 徐爽, 史大为, 郭建, 喻志农.基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 必威体育下载 , 2023, 72(3): 038501.doi:10.7498/aps.72.20221476
      [8] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟.Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能. 必威体育下载 , 2023, 72(19): 198503.doi:10.7498/aps.72.20230971
      [9] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋.WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 必威体育下载 , 2023, 72(16): 160201.doi:10.7498/aps.72.20230638
      [10] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平.基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 必威体育下载 , 2023, 72(9): 097302.doi:10.7498/aps.72.20222222
      [11] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪.退火温度对氧化镓薄膜及紫外探测器性能的影响. 必威体育下载 , 2023, 72(2): 028502.doi:10.7498/aps.72.20221716
      [12] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华.具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 必威体育下载 , 2022, 71(20): 208501.doi:10.7498/aps.71.20220859
      [13] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊.基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 必威体育下载 , 2021, 70(23): 238502.doi:10.7498/aps.70.20211039
      [14] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊.N掺杂对 ${\boldsymbol\beta} $ -Ga2O3薄膜日盲紫外探测器性能的影响. 必威体育下载 , 2021, 70(17): 178503.doi:10.7498/aps.70.20210434
      [15] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡.无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 必威体育下载 , 2020, 69(16): 168101.doi:10.7498/aps.69.20200481
      [16] 赵赞善, 李培丽.基于半导体光纤环形腔激光器的全光广播式超宽带信号源. 必威体育下载 , 2019, 68(14): 140401.doi:10.7498/aps.68.20182301
      [17] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚.包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响. 必威体育下载 , 2015, 64(6): 067802.doi:10.7498/aps.64.067802
      [18] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆.直接调制光反馈半导体激光器产生超宽带信号. 必威体育下载 , 2013, 62(6): 064209.doi:10.7498/aps.62.064209
      [19] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新.60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 必威体育下载 , 2013, 62(7): 076106.doi:10.7498/aps.62.076106
      [20] 马海林, 苏 庆, 兰 伟, 刘雪芹.氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 必威体育下载 , 2008, 57(11): 7322-7326.doi:10.7498/aps.57.7322
    计量
    • 文章访问数:28139
    • PDF下载量:932
    • 被引次数:0
    出版历程
    • 收稿日期:2018-10-15
    • 修回日期:2019-01-30
    • 上网日期:2019-04-01
    • 刊出日期:2019-04-05

      返回文章
      返回
        Baidu
        map